PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Methods of introducing a discontinuity line into a numerical model of a hard coal deposit

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The largest problem that we encounter when creating a numerical model of a hard coal deposit is to insert discontinuity lines representing faults, seams junction lines, wedging, etc. The faults introduced on the map of the seam are mostly flat polylines, while we do not know the altitude ordinate. In order to determine the spatial position of the faults, authoring methods have been developed and implemented in the Geolisp software and in the CAD system. This article presents the method based on calculating the spatial position of the fault with respect to the existing contours, which arrive at it from both sides, the method based on the assumption that the inclination of the seam in front of and behind the fault is constant, the procedure involving the performing of independent surfaces of the upthrow and downthrow side with extrapolation by the Kriging method, and the procedure requiring the transfer of the fault from the above-lying seam or a Carboniferous roof. The solutions given in the article are successfully used in most mines in Poland. The correct introduction of the fault course is important for the accuracy of forecasting the impact of the mining operations on the rock mass and the surface area.
Rocznik
Strony
81--89
Opis fizyczny
Bibliogr. 20 poz., rys.
Twórcy
  • Silesian University of Technology 2A Akademicka St., 44-100 Gliwice, Poland
  • Silesian University of Technology 2A Akademicka St., 44-100 Gliwice, Poland
Bibliografia
  • 1. 3DS (2022) [Online] Available from: www.3ds.com [Accessed: May 24, 2022].
  • 2. Błaszczak-Bąk, W., Poniewiera, M., Sobieraj-Żłobińska, A. & Kowalik, M. (2018) Reduction of measurement data before Digital Terrain Model generation vs. DTM generalization. Survey Review 51(3), pp. 422–430, doi: 10.1080/00396265.2018.1474685.
  • 3. DataMine software (2022) [Online] Available from: www. dataminesoftware.com [Accessed: May 24, 2022].
  • 4. Geolisp (2022) [Online] Available from: www.geolisp.pl. [Accessed: May 24, 2022].
  • 5. Georeka (2022) [Online] Available from: www.georeka.com [Accessed: May 24, 2022].
  • 6. Golden software (2022) [Online] Available from: www. goldensoftware.com [Accessed: May 24, 2022].
  • 7. Jelonek, I., Poniewiera, M. & Gąsior, B. (2015) The qualitative model of the deposit on the example of the Kompania Węglowa S.A. Part II: Introducing discontinuity lines into digital deposit model, ICHEME, Melbourne, Australia.
  • 8. Jia, Q., Li, W. & Che, D. (2020) A triangulated irregular network constrained ordinary Kriging method for three-dimensional modeling of faulted geological surfaces. IEEE Access 8, pp. 85179–85189, doi: 10.1109/ACCESS.2020.2993050.
  • 9. Jiskani, I.M. & Siddiqui, F.I. (2019) Fault orientation modeling of Sonda-Jherruck coalfield, Pakistan. Journal of Mining and Environment 10, 2, pp. 305–313. doi: 10.22044/ jme.2019.7415.1597.
  • 10. Kowalczuk, J., Hadam, A. & Poniewiera, M. (2019) Tremors and rock bursts hazards characteristics using the digital model of the deposit in KWK ROW Site Marcel. IOP Conference Series: Earth and Environmental Science 261, 012020, doi: 10.1088/1755-1315/261/1/012020.
  • 11. Krawczyk, A. (2019) Geomatics and mining geoinformation – their practical applications and development barriers. Kraków, Poland: AGH University of Science and Technology Press.
  • 12. Maptek (2022) [Online] Available from: www.maptek.com [Accessed: May 24, 2022].
  • 13. Petex (2022) [Online] Available from: www.petex.com [Accessed: May 24, 2022].
  • 14. Poniewiera, M. (2018) Calculation of object deformation category considering date of its construction. IOP Conference Series Earth and Environmental Science 198(1), 012012, doi: 10.1088/1755-1315/198/1/012012.
  • 15. Rockware (2022) [Online] Available from: www.rockware. com [Accessed: May 24, 2022].
  • 16. Slb (2022) [Online] Available from: www.software.slb.com [Accessed: May 24, 2022].
  • 17. Sokoła-Szewioła, V. & Poniewiera, M. (2019) Application of a digital model of deposit in Polish hard coal mines on the example of Polish Mining Group Ltd. In: Mining Goes Digital. London: CRC Press/Balkema, pp. 344–354, doi: 10.1201/9780429320774-40.
  • 18. Wu, Q. & Xu, H. (2003) An approach to computer modeling and visualization of geological faults in 3D. Computers & Geosciences 29, 4, pp. 503–509, doi: 10.1016/S0098- 3004(03)00018-9.
  • 19. Wu, Q., Xu, H. & Zou, X. (2005) An effective method for 3D geological modeling with multi-source data integration. Computers & Geosciences 31, 1, pp. 35–43, doi: 10.1016/j. cageo.2004.09.005.
  • 20. Zhu, L., He, Z., Pan, X. & Wu, X. (2006) An approach to computer modeling of geological faults in 3D and an application. Journal of China University of Mining and Technology 16, 4, pp. 461–465, doi: 10.1016/S1006-1266(07)60048- 0.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu „Społeczna odpowiedzialność nauki” - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cad2963b-c96d-4960-8f6c-50d42b9cbe1b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.