PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Unravelling the Effect of Anthraquinone Metal Salts as Wide-range Plateau Catalysts to Enhance the Combustion Properties of Solid Propellants

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Novel lead and copper salts based on anthraquinone, including 1,8-dihydroxyanthraquinone,1,4,5,8-tetrahydroxyanthraquinone and 1,8-dihydroxy-4,5-dinitroanthraquinone, were prepared and characterized by Fourier transform infrared spectroscopy (FTIR), elemental analysis (EA), and X-ray fluorescence (XRF). The catalytic effects of these compounds on the decomposition of nitrocellulose (NC) and on the combustion properties of double-base (DB) and composite modified double-base (CMDB) propellants were comprehensively investigated. The results demonstrated that the burning rate is significantly increased (by 200%) in the lower pressure range (2-6 MPa) as compared to the control systems without added anthraquinone-based salts. Concurrently, the pressure exponents (n) were obviously lower, exhibiting a “wide-range plateau” combustion phenomenon in the middle-pressure region. Specifically, for the DB propellants such a plateau region extended from 10 MPa to 16 MPa for n equal to 0.10, from 10 MPa to 18 MPa for n equal to 0.11 and from 8 MPa to 18 MPa when n is 0.05. In the case of RDX-CMDB propellants, the plateau was found to be in the range 6-18 MPa, with n in the range 0.16-0.27, depending on the type of catalyst, in contrast to the reference CMDB sample, which was characterized by n equal to 0.7 for the same pressure range.
Rocznik
Strony
376--390
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
Twórcy
autor
  • Xi’an Modern Chemistry Research Institute, Zhangba East Road 168, Xi’an Shaanxi 710065, China
autor
  • Science and Technology on Combustion, Thermal Structure, and Internal Flow Laboratory, Northwestern Polytechnical University, Xi’an, 710072, China
autor
  • Xi’an Modern Chemistry Research Institute, Zhangba East Road 168, Xi’an Shaanxi 710065, China
autor
  • Xi’an Modern Chemistry Research Institute, Zhangba East Road 168, Xi’an Shaanxi 710065, China
autor
  • Xi’an Modern Chemistry Research Institute, Zhangba East Road 168, Xi’an Shaanxi 710065, China
autor
  • Xi’an Modern Chemistry Research Institute, Zhangba East Road 168, Xi’an Shaanxi 710065, China
autor
  • Xi’an Modern Chemistry Research Institute, Zhangba East Road 168, Xi’an Shaanxi 710065, China
Bibliografia
  • [1] Degirmenci, E. Effects of Grain Size and Temperature of Double Base Solid Propellants on Internal Ballistics Performance. Fuel 2015, 146: 95-102.
  • [2] Bello, M. N.; Pantoya, M. L.; Kappagantula, K.; Wang, W. S.; Vanapalli, S. A.; Irvin, D. J.; Wood, L. M. Reaction Dynamics of Rocket Propellant with Magnesium Oxide Nanoparticles. Energ. Fuel 2015, 29: 6111-6117.
  • [3] Han, X.; Wang, T. F.; Lin, Z. K.; Han, D. L.; Li, S. F.; Zhao, F. Q.; Zhang, L. Y. RDX/AP-CMDB Propellants Containing Fullerenes and Carbon Black Additives. Defence Sci. J. 2009, 59: 284-293.
  • [4] Vargeese, A. A. A Kinetic Investigation on the Mechanism and Activity of Copper Oxide Nanorods on the Thermal Decomposition of Propellants. Combust. Flame 2016, 165: 354-360.
  • [5] Reshmi, S.; Vijayalakshmi, K. P.; Thomas, D.; Rajeev, R.; Reghunadhan Nair, C.P. Polybutadiene Crosslinked by 1,3-Dipolar Cycloaddition: Pyrolysis Mechanism, DFT Studies and Propellant Burning Rate Characteristics. Combust. Flame 2016, 167: 380-391.
  • [6] Isert, S.; Hedman, T. D.; Lucht, R. P.; Son, S. F. Oxidizer Coarse-to-fine Ratio Effect on Microscale Flame Structure in a Bimodal Composite Propellant. Combust. Flame 2016, 163: 406-413.
  • [7] Li, X. Y.; Guerieri, P.; Zhou, W. B.; Huang, C.; Zachariah, M. R. Direct Deposit Laminate Nanocomposites with Enhanced Propellent Properties. ACS Appl. Mater. Interfaces 2015, 7: 9103-9109.
  • [8] Kumar, P.; Joshi, P. C.; Kumar, R. Thermal Decomposition and Combustion Studies of Catalyzed AN/KDN Based Solid Propellants. Combust. Flame 2016, 166: 316-332.
  • [9] Hu, H. X.; Feng, C. G.; Wang, J. N. The Burning Characteristics of RDX-CMDB Propellents. Theory Pract. Energ. Mater., 4th [Proc. Int. Autumn Semin. Propellants, Explos. Pyrotech.] 2001, 223-226.
  • [10] Dey, A.; Athar, J.; Varma, P.; Prasant, H.; Sikder, A. K.; Chattopadhyay, S. Graphene-iron Oxide Nanocomposite (GINC): an Efficient Catalyst for Ammonium Perchlorate (AP) Decomposition and Burn Rate Enhancer for AP Based Composite Propellant. RSC Adv. 2015, 5: 1950-1960.
  • [11] Demidova, L. A.; Htwe, Y. Z.; Denisjuk, A. P. Catalytic Mechanism in Combustion of Propellant with Ammonium Nitrate. Sci. Technol. Energ. Mater. 2015, 76: 87-91.
  • [12] Yan, Q. L.; Gozin, M.; Zhao, F. Q.; Cohen, A.; Pang, S. P. Highly Energetic Compositions Based on Functionalized Carbon Nanomaterials. Nanoscale 2016, 8: 4799-4805.
  • [13] Li, Z. M.; Zhou, M. R.; Zhang, T. L.; Zhang, J. G.; Yang, L.; Zhou, Z. N. The Facile Synthesis of Graphene Nanoplatelet-Lead Styphnate Composites and Their Depressed Electrostatic Hazards. J. Mater. Chem. A 2013, 1: 12710-12714.
  • [14] Li, Y.; Zhao, W. Y.; Mi, Z. H.; Yang, L.; Zhou, Z. N.; Zhang, T. L. Graphenemodified Explosive Lead Styphnate Composites. J. Therm. Anal. Calorim. 2016, 124: 683-691.
  • [15] Jiao, Q. Z.; Liu, H. B.; Zhao, Y.; Zhang, Z. Preparation and Application of Cu/Cr Hydrotalcite-like Compounds. J. Mater. Sci. 2009, 44: 4422-4428.
  • [16] Sathiskumar, P. S.; Thomas, C. R.; Madras, G. Solution Combustion Synthesis of Nanosized Copper Chromite and Its Use as a Burn Rate Modifier in Solid Propellants. Ind. Eng. Chem. Res. 2012, 51: 10108-10116.
  • [17] Vargeese, A. A.; Muralidharan, K. Kinetics and Mechanism of Hydrothermally Prepared Copper Oxide Nanorod Catalyzed Decomposition of Ammonium Nitrate. Appl. Catal. a-Gen. 2012, 447: 171-177.
  • [18] Gao, W. J.; Liu, X. Y.; Su, Z. Y.; Zhang, S.; Yang, Q.; Wei, Q.; Chen, S. P.; Xie, G.; Yang, X. W.; Gao, S. L. High-energy-density Materials with Remarkable Thermostability and Insensitivity: Syntheses, Structures and Physicochemical Properties of Pb(II) Compounds with 3-(Tetrazol-5-yl) Triazole. J. Mater. Chem. A 2014, 2: 11958-11965.
  • [19] Yan, Q. L.; Cohen, A.; Petrutik, N.; Shlomovich, A.; Burstein, L.; Pang, S. P.; Gozin, M. Highly Insensitive and Thermostable Energetic Coordination Nanomaterials Based on Functionalized Graphene Oxides. J. Mater. Chem. A 2016, 4: 9941-9948.
  • [20] Ren, H.; Liu, Y. Y.; Jiao, Q. J.; Fu, X. F.; Yang, T. T. Preparation of Nanocomposite PbO Center Dot CuO/CNTs via Microemulsion Process and Its Catalysis on Thermal Decomposition of RDX. J. Phys. Chem. Solids 2010, 71: 149-152.
  • [21] Vargeese, A. A. Pressure Effects on Thermal Decomposition Reactions: a Thermokinetic Investigation. RSC Adv. 2015, 5: 78598-78605.
  • [22] Jin, B.; Peng, R. F.; Zhao, F. Q.; Yi, J. H.; Xu, S. Y.; Wang, S. B.; Chu, S. J. Combustion Effects of Nitrofulleropyrrolidine on RDX-CMDB Propellants. Propellants Explos. Pyrotech. 2014, 39: 874-880.
  • [23] Hong, W. L.; Zhao, F. Q.; Liu, J. H.; Tian, D. Y.; Luo, Z. K.; Chen, P.; Luo, Y. Synthesis and Combustion Catalytic Activity of Nanoparticle Pb(II)-Phthalate Complex. Chinese J. Inorg. Chem. 2004, 20: 996-1000.
  • [24] Najafi, M.; Samangani, A. K. Non-Isothermal Kinetic Study of the Thermal Decomposition of Melamine 3-Nitro-1,2,4-triazol-5-one Salt. Propellants Explos. Pyrotech. 2011, 36: 487-492.
  • [25] Yi, J. H.; Zhao, F. Q.; Hong, W. L.; Xu, S. Y.; Hu, R. Z.; Chen, Z. Q.; Zhang, L. Y. Effects of Bi-NTO Complex on Thermal Behaviors, Nonisothermal Reaction Kinetics and Burning Rates of NG/TEGDN/NC Propellant. J. Hazard. Mater. 2010, 176: 257-261.
  • [26] Kulkarni, P. B.; Purandare, G. N.; Nair, J. K.; Talawar, M. B.; Mukundan, T.; Asthana, S. N. Synthesis, Characterization, Thermolysis and Performance Evaluation Studies on Alkali Metal Salts of TABA and NTO. J. Hazard. Mater. 2005, 119: 53-61.
  • [27] Kulkarni, P. B.; Reddy, T. S.; Nair, J. K.; Nazare, A. N.; Talawar, M. B.; Mukundan, T.; Asthana, S. N. Studies on Salts of 3-Nitro-1,2,4-triazol-5-one (NTO) and 2,4,6-Trinitroanilino Benzoic Acid (TABA): Potential Energetic Ballistic Modifiers. J. Hazard. Mater. 2005, 123: 54-60.
  • [28] Wang, Y. L.; Zhao, F. Q.; Xu, K. Z.; Ji, Y. P.; Yi, J. H.; Wang, W.;Yu, T.; An, T. Synthesis, Thermal Behavior, and Application of 4-Amino-3,5-Dinitropyrazole Lead Salt. J. Therm. Anal. Calorim. 2014, 115: 1219-1225.
  • [29] Wang, Y. L.; Zhao, F. Q.; Xu, K. Z.; Ji, Y. P.; Yi, J. H.; Chen, B.; An, T. Synthesis, Crystal Structure and Thermal Behavior of 4-Amino-3,5-Dinitropyrazole Potassium Salt. Inorg. Chim. Acta 2013, 405: 505-510.
  • [30] Wang, Y. L.; Zhao, F. Q.; Ji, Y. P.; Pan, Q.; Yi, J. H.; An, T.; Wang, W.; Yu, T.; Lu, X. M. Synthesis and Thermal Behaviors of 4-Amino-3,5-dinitro-1H-pyrazole. J. Anal. Appl. Pyrolysis 2012, 98: 231-235.
  • [31] Patil, P. R.; Krishnamurthy, V. N.; Joshi, S. S. Differential Scanning Calorimetric Study of HTPB Based Composite Propellants in Presence of Nano Ferric Oxide. Propellants Explos. Pyrotech. 2006, 31: 442-446.
  • [32] Yang, Y.; Yu, X. J.; Wang, J.; Wang, Y. X. Effect of the Dispersibility of Nano CuO Catalyst on Heat Releasing of AP/HTPB Propellant. J. Nanomater. 2011, 21: 335-338.
  • [33] Wei, T. T.; Zhang, Y.; Xu, K. Z.; Ren, Z. Y.; Gao, H. X.; Zhao, F. Q. Catalytic Action of Nano Bi2WO6 on Thermal Decompositions of AP, RDX, HMX and Combustion of NG/NC Propellant. RSC Adv. 2015, 5: 70323-70328.
  • [34] Hao, G. Z.; Liu, J.; Gao, H.; Xiao, L.; Ke, X.; Jiang, W.; Zhao, F. Q.; Gao, H. X. Preparation of Nano-Sized Copper beta-Resorcylate (beta-Cu) and Its Excellent Catalytic Activity for the Thermal Decomposition of Ammonium Perchlorate. Propellants Explos. Pyrotech. 2015, 40: 848-853.
  • [35] Wang, Y. L.; Zhao, F. Q.; Ji, Y. P.; Yan, Q. L.; Yi, J. H.; Xu, S. Y.; Luo, Y.; Lu, X. M. Synthesis and Thermal Behaviors of 1,8-Dihydroxy-4,5-dinitroanthraquinone Barium Salt. J. Anal. Appl. Pyrolysis 2014, 105: 295-300.
  • [36] Wang, Y. L.; Zhao, F. Q.; Ji, Y. P.; Yt, J. H.; Wang, W.; Xu, S Y.; An, T.; Pei, Q. Synthesis and Thermal Behavior of 1,8-Dihydroxy-4,5-dinitroanthraquinone Manganese Salt. Chem. Res. Chinese U. 2014, 30: 468-471.
  • [37] Shamsipur, M.; Pourmortazavi, S. M.; Hajimirsadeghi, S. S.; Atifeh, S. M. Effect of Functional Group on Thermal Stability of Cellulose Derivative Energetic Polymers. Fuel 2012, 95: 394-399.
  • [38] Zhao, N. N.; Gong, H. J.; An, T.; Zhao, F. Q.; Yang, A. W.; Hu, R. Z.; Ma, H. X. Effects of Fe2O3 Nanoparticles on the Thermal Behavior and Non-isothermal Decomposition Kinetics of Nitrocellulose. J. Anal. Appl. Pyrolysis 2016, 107: 451-454.
  • [39] Li, H.; Zhao, F. Q.; Li, X. J.; Fan, X. Z.; Wang, G. Q. Effect of Nanometer Organic Metal Salts on the Combustion Properties of RDX-CMDB Propellant. (in Chinese) Chin. J. Explos. Propellants (Huozhayao Xuebao) 2014, 37: 78-83.
  • [40] Wang, H.; Zhao, F. Q.; Gao, H. X.; Li, S. W.; Hao, H. X. Preparation of Nanosize Lead Phthalate and its Catalysis for Double-base Propellant Combustion. (in Chinese) Chin. J. Energ. Mater. (Hanneng Cailiao) 2006, 14: 45-48.
  • [41] Hong, W. L.; Liu, J. H.; Zhao, F. Q.; Li, Y. M.; Tian, D. Y.; Zhang, P. X. Synthesis and Combustion Catalytic Activity of Nanoparticle Pb(II)-Gallate Complex. Acta Chim. Sinica 2005, 63: 249-53.
  • [42] Li, W.; Ren, Y. H.; Zhao, F. Q.; Zhang, X. B.; Ma, H. X.; Xu, K. Z.; Wang, B. Z.; Yi, J. H.; Song, J. R.; Hu, R. Z. Effects of Lead Complex-Based BTATz on Thermal Behaviors, Non-Isothermal Reaction Kinetics and Combustion Properties of DB/RDX-CMDB Propellants. Acta Phys.-Chim. Sin. 2013, 29: 2087-2094.
  • [43] Zhang, G. F.; Wang, C. Y.; An, T.; Zhao, F. Q.; Fan, X. Z. Synthesis, Characterization, and Combustion Catalytic Activities of Copper(II) and Lead(II) Salts of p-Nitrocalix[n]arenes (n=4, 6, 8). Propellants Explos. Pyrotech. 2014, 39:802-808.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cace82f6-b448-4c4c-83d2-56902490d5ba
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.