Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Metallic glasses, especially those based on zirconium have garnered significant attention due to their unique amorphous structure, offering a combination of high strength, corrosion resistance, and unique wear properties. The cold spray process, a solid-state coating deposition method, has emerged as a promising technique for applying metallic glass coatings, preserving the amorphous structure. The objective of the presented studies was to analyze the microstructure and mechanical properties of a cold sprayed Zr-based amorphous powder. The coating was sprayed using the Impact Innovations 5/8 system with the robot Fanuc M-20iA at Kielce University of Technology. The feedstock used for this study was commercial AMZ-4 powder. The high kinetic energy of feedstock particles and their morphology caused significant deformation and particular splats strongly adhered to the substrate and to each other. Throughout the cross-section, the coating was homogenous and exhibited negligible porosity. On the other hand, histograms and probability distributions of the hardness and Young's modulus of cold sprayed coating showed significant differences. X-ray diffraction analysis indicated that the deposited coating had the same amorphous structure as the feedstock.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
73--85
Opis fizyczny
Bibliogr. 38 poz., fig., tab.
Twórcy
autor
- Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, Tysiąclecia Państwa, Polskiego 7, 25-314 Kielce, Poland
autor
- Department of Materials Engineering and Research Centre, Faculty of Mechanical Engineering, University of Zilina, Univerzitna 8215/1, 010 26 Zilina, Slovakia
autor
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta 25, 30-059 Kraków, Poland
autor
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta 25, 30-059 Kraków, Poland
autor
- Faculty of Management and Computer Modelling, Kielce University of Technology, Tysiąclecia Państwa, Polskiego 7, 25-314 Kielce, Poland
autor
- Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, Tysiąclecia Państwa, Polskiego 7, 25-314 Kielce, Poland
autor
- Department of Materials Engineering and Research Centre, Faculty of Mechanical Engineering, University of Zilina, Univerzitna 8215/1, 010 26 Zilina, Slovakia
Bibliografia
- 1. Xiulin J., Yiping S., Cuicui J., Hui W. Zhanxi Z. Slurry erosion behavior of two Zr-based bulk metallic glasses. Wear, 2021; 476: 203684. https://doi. org/10.1016/j.wear.2021.203684
- 2. Gao K., Zhu X.G., Chen L., Li W.H., Xu X., Pan B.T., Li W.R., Zhou W.H., Li L., Huang W., Li Y. Recent development in the application of bulk metallic glasses. Journal of Materials Science & Technology 2022; 131: 115–121. https://doi.org/10.1016/j. jmst.2022.05.028
- 3. Hejwowski T., Marczewska-Boczkowska K., Kobayashi A. A comparative study of electrochemical properties of metallic glasses and weld overlay coatings. 2013; 88: 118–123. doi: https://doi. org/10.1016/j.vacuum.2012.02.031
- 4. Sohrabi S., Fu J., Li L., Zhang Y., Li X., Sun F., Ma J., Wang W.H. Manufacturing of metallic glass components: Processes, structures and properties. Progress in Materials Science 2024; 144: 101283. https://doi.org/10.1016/j.pmatsci.2024.101283
- 5. Liu H., Jiang Q., Huo J., Zhang Y., Yang W., Li X. Crystallization in additive manufacturing of metallic glasses: A review. Additive Manufacturing, 2020; 36: 101568. https://doi.org/10.1016/j. addma.2020.101568
- 6. Lashgari, H.R., Ferry, M., Li, S. Additive manufacturing of bulk metallic glasses: Fundamental principle, current/future developments and applications. Journal of Materials Science & Technology 2022; 119: 131–149. https://doi.org/10.1016/j. jmst.2021.09.068
- 7. Papyrin, A. Cold Spraying. Elsevier Ltd. Amsterdam, The Netherlands, 2007.
- 8. Pawlowski, L. The science and engineering of thermal spray coatings. 2nd ed.; Wiley: Hoboken, NJ, USA, 2008.
- 9. Stoltenhoff T., Voyer M., Kreye H. Cold spraying – State of the art and applicability, Proceedings of the International Thermal Spray Conference Essen., 2002; 366–374.
- 10. Srikanth A., Bolleddu V. A review on characteris- tics of cold sprayed coatings. Australian Journal of Mechanical Engineering. https://doi.org/10.1080/1 4484846.2020.1794504
- 11. Vaz R.F., Garfias A., Albaladejo V., Sanchez J., Cano I.G. A review of advances in cold spray additive manufacturing. Coatings 2023; 13: 267. https:// doi.org/10.3390/coatings13020267
- 12. Żórawski W., Molak R., Mądry J., Sienicki J., Góral A., Makrenek M., Scendo M., Dobosz R. Experimental and numerical investigations of titanium deposition for cold spray additive manufacturing as a function of standoff distance. Materials 2021; 14: 5492. https://doi.org/10.3390/ma14195492
- 13. Zarazua-Villalobos L.,Mary N., Bernard C., Ogawa K., Boissy C. Improved deposition efficiency of low-pressure cold-sprayed tin coating through powder recycling. Journal of Thermal Spray Techology 2022; 31: 2577– 2593. https://doi.org/10.1007/s11666-022-01447-4
- 14. Li W., Yang K., Yin S., Yang X., Yaxin Xu Y., Lupoi R. Solid-state additive manufacturing and repairing by cold spraying: A review. Journal of Materials Science & Technology 2018; 34(3): 440–457. https:// doi.org/10.1016/j.jmst.2017.09.015
- 15. Prashar G., Vasudev H. A comprehensive review on sustainable cold spray additive manufacturing: State of the art, challenges and future challenges. Journal of Cleaner Production 2021; 310: 127606. https:// doi.org/10.1016/j.jclepro.2021.127606
- 16. Guo D., Kazasidis M., Hawkins A., Fan N., Leclerc Z.Z., MacDonald D., Nastic A., Nikbakht R., Ortiz- Fernandez R., Rahmati S., Razavipour M., Richer P., Yin S., Lupoi R., Jodoin B. Cold spray: over 30 years of development toward a hot future. Journal of Thermal Spray Techology. https://doi.org/10.1007/ s11666-022-01366-4
- 17. Sienicki J., Żórawski W., Dworak A., Koruba P., Jurewicz P., Reiner J. Cold spraying and laser cladding in the aircraft coating production as an alternative to harmful cadmium and chromium electroplating processes. Aircraft Engineering and Aerospace Technology, 2019; 91: 205–215.
- 18. Bijalwan P., Kumar A., Nayak S.K.,Banerjee A., Dutta M., Laha T. Microstructure and corrosion behavior of Fe-based amorphous composite coatings developed by atmospheric plasma spraying. Journal of Alloys and Compounds 2019; 796: 47–54 https:// doi.org/10.1016/j.jallcom.2019.05.046
- 19. Su J., Kang J., Yue W., Ma G., Fu Z., Zhu L., She D., Wang H., Wang C. Comparison of tribological behavior of Fe-based metallic glass coatings fabricated by cold spraying and high velocity air fuel spraying. Journal of Non-Crystalline Solids 2019; 522: 119582. https://doi.org/10.1016/j. jnoncrysol.2019.119582
- 20. Wang Z., Ma L., Han B., Huang G., Cao Q., Sun M. Influence of parameters on the cold spraying FeCoCrMoBCY amorphous coatings. Surface Engineering 2021; 37(5): 545–557. https://doi.org/10 .1080/02670844.2020.1805716
- 21. Babu P.S., Jha R., Guzman M., Sundararajan G., Agarwal A. Indentation creep behavior of cold sprayed aluminum amorphous/ nano-crystalline coatings. Materials Science & Engineering A 2016; 658: 415–421. http://dx.doi.org/10.1016/j. msea.2016.02.030
- 22. Yoon S., Lee C., Choi H., Jo H. Kinetic spraying deposition behavior of bulk amorphous NiTiZrSiSn feedstock. Materials Science & Engineering A 2006; 415: 45–52.
- 23. List, A.,Gärtner, F., Mori, T., Schulze, M.,Assadi, H., Kuroda, S., Klassen, T. Cold spraying of amorphous Cu50Zr50 alloys. Journal of Thermal Spray Technology 2014; 24: 108–118. https://doi.org/10.1007/ s11666-014-0187-x
- 24. Marattukalam, J.J., Pacheco V., Karlsson D., Riekehr L., Lindwall J., Forsberg F., Jansson F., Sahlberg M., Hjörvarsson B. Development of process parameters for selective laser melting of a Zr-based bulk metallic glass. Additive Manufacturing 2020; 33: 101124.
- 25. https://doi.org/10.1016/j.addma.2020.101124
- 26. Sohrabi N., Jhabvala J., Kurtuldu G., StoicaM., Parrilli A.,Berns S., Polatidis E., Van Petegem S., Hugon S., Neels A., Loffer J.F., Loge R. Characterization, mechanical properties and dimensional accuracy of a Zr-based bulk metallic glass manufactured via laser powder-bed fusion. aterials and Design 2021; 199: 109400. https://doi.org/10.1016/j. matdes.2020.109400
- 27. Luo D., Du Y. Mechanical properties of bulk metallic glasses additively manufactured by laser powder bed fusion: A review. Materials 2023; 16: 7034. https://doi.org/10.3390/ma16217034
- 28. Best J.P., Nomoto K., Yang F., Li B., Stolpe M., Zeng L., Evenson Z., Hugenschmidt C., Li X., Ronger S.P., Kruzic J.J. Advanced structural analysis of a laser additive manufactured Zr-based bulk metallic glass along the build height. Journal of Materials Science 2022; 57: 9678–9692. https:// doi.org/10.1007/s10853-022-06991-6
- 29. Pacheco V., Karlsson D., Marattukalam J.J., Stolpe M., Hjörvarsson B., Jansson Ulf., Sahlberg M. Thermal stability and crystallization of a Zr-based metallic glass produced by suction casting and selective laser melting. Journal of Alloys and Compounds 5 June 2020; 825: 153995. https://doi.org/10.1016/j. jallcom.2020.153995
- 30. Heraeus Additive Manufacturing GmbH, www. Heraeus-amloy.com, Met. Powder AMZ4 Data Sheet. 2023.
- 31. Żórawski W., Góral A., Makrenek M., Lityńska-Dobrzyńska L., Czaja P., Influence of preheating gas temperature and surface roughness on microstructure and mechanical properties of cold sprayed nickel coatings. Materials 2023; 16: 7002.
- 32. Scendo M., Żórawski W., Staszewska K., Makrenek M., Góral A. Influence of Surface Pretreatment on the Corrosion Resistance of Cold Sprayed Nickel Coatings in Acid Chloride Solution. J. Mater. Eng. Perf. 2018; 27: 1725–1737.
- 33. Su J., Kang J., Yue W., Ma G., Fu Z., Zhu L., She D., Wang H., Wang C. Review of cold spraying and its use for metallic glass coatings. Materials Science and Technology 2019; 35(16): 1908–1923. https:// doi.org/10.1080/02670836.2019.1654240
- 34. Fan N., Huang C., Wang Z., Yu P., Chen W., Luppoi R., Xie Q., Liu L., Yin S. Interparticle bonding and interfacial nanocrystallization mechanisms in additively manufactured bulk metallic glass fabricated by cold spray. A dditive Manufacturing 2022; 58: 103057. https://doi.org/10.1016/j. addma.2022.103057
- 35. Góral A., Żórawski W., Czaja P., Lityńska- Dobrzyńska L., Makrenek M., Kowalski S. Effect of powder morphology on the microstructure and properties of cold sprayed Ni coatings. International Journal of Materials Research, 2019; 1101: 49–59, https://doi.org/10.3139/146.111698
- 36. Góral A., Żórawski W., Makrenek M. The effect of the standoff distance on the microstructure and mechanical properties of cold sprayed Cr3C2- 25(Ni20Cr) coatings. Surface and Coatings Technology 2019; 361: 9–18.
- 37. Soboń D. Effect of laser surface melting on microstructure of cold sprayed Ni20Cr coatings. Archives of Metallurgy and Materials 2021; 66: 853–860.
- 38. Ji X., Shan Y., Ji C., Wang H., Zhao Z. Slurry erosion behavior of two Zr-based bulk metallic glasses. Wear 2021; 476: 203684. https://doi.org/10.1016/j. wear.2021.203684
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cace7fc1-d29b-458b-a564-216d0ef1ede5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.