PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On rough set theory on achieving high quality cable material production by green low carbon technology

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
As the second largest machinery industry, the energy-intensive cable industry not only creates a lot of economic value but also consumes a lot of energy. It is an inevitable requirement to promote the technological development of the industry in the new era to improve the quality and efficiency and realise industrial energy-saving and consumption reduction. In order to obtain good strength and conductivity, the metal rods of cable are usually heat-treated for several hours or even several days after the rods are extruded, this is a major energy consuming process in traditional production. Based on the background, this study adopted the energy-saving equal-channel angular pressing (ECAP) technology to replace the traditional heating treatment process, and converted the simple heat conduction with thermo-mechanical energy transfer, so as to realise the good strength and conductivity matching of the cable aluminum alloy material. In this study, energy-saving ECAP technology is used to replace the traditional heat treatment process, and heat-mechanical energy transfer is used to replace the simple heat conduction, so as to achieve good strength and conductivity matching of cable aluminium alloy material. The results show that the suitable ECAP process routes can improve the microstructure of aluminum alloy with higher strength and conductivity than the traditional heating process. The research results can be used for technology upgrading and low carbon production in cable industry due to the significantly time reduction of the energy-consuming heat treatment and the high-efficient obtainment of high-quality production.
Rocznik
Strony
49--59
Opis fizyczny
Bibliogr. 28 poz., rys., wykr., tab.
Twórcy
  • Institute of Materials Processing and Intelligent Manufacturing, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 China
autor
  • Institute of Materials Processing and Intelligent Manufacturing, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 China
  • Institute of Materials Processing and Intelligent Manufacturing, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 China
  • Institute of Materials Processing and Intelligent Manufacturing, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 China
  • Department of Mechanical Engineering, Kafrelsheikh University, Kafrelsheikh 61519, Egypt
autor
  • Institute of Materials Processing and Intelligent Manufacturing, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 China
Bibliografia
  • [1] Broniszewski M, Werle S. Energy efficiency modernizations at the industrial plant: A case study. Ecol Chem Eng S. 2020;27(2):183-93. DOI: 10.2478/eces-2020-0011.
  • [2] Klugmann-Radziemska E, Rudnicka M. Energy yield generated by a small building integrated photovoltaic installation. Ecol Chem Eng S. 2020;27(3):335-46. DOI: 10.2478/eces-2020-0021.
  • [3] Rodziewicz T, Zaremba A, Wacławek M. Photovoltaics: Solar energy resources and the possibility of their use. Ecol Chem Eng S. 2016;23(1):9-32. DOI: 10.1515/eces-2016-0001.
  • [4] Liu T, Wang Q, Sui Y, Wang Q. Microstructure and mechanical properties of overcast 6101-6101 wrought Al alloy joint by squeeze casting. J Mater Sci Technol. 2016;32(4):298-304. DOI: 10.1016/j.jmst.2015.11.020.
  • [5] Singh D, Jayaganthan R. Effect of post cryorolling treatments on microstructural and mechanical behaviour of ultrafine grained Al-Mg-Si alloy. J Mater Sci Technol. 2014;30(10):998-1005. DOI: 10.1016/j.jmst.2014.03.009.
  • [6] Sabirov I, Murashkin MY, Valiev RZ. Nanostructured aluminium alloys produced by severe plastic deformation: New horizons in development. Mater Sci Eng A. 2013;560:1-24. DOI: 10.1016/j.msea.2012.09.020
  • [7] Murashkin MY, Sabirov I, Sauvage X, Valiev RZ. Nanostructured Al and Cu alloys with superior strength and electrical conductivity. Mater Sci. 2016;51(1):33-49. DOI: 10.1007/s10853-015-9354-9.
  • [8] Huang X, Hansen N, Tsuji N. Hardening by annealing and softening by deformation in nanostructured metals. Science. 2006;312(5771):249-51. DOI: 10.1126/science.1124268.
  • [9] Rhee H, Whittington WR, Oppedal AL, Sherif AR, King RL, Kim HJ, et al. Mechanical properties of novel aluminum metal matrix metallic composites: Application to overhead conductors. Materials Design. 2015;88:16-21. DOI: 10.1016/j.matdes.2015.08.109.
  • [10] Karnesky RA, Meng L, Dunand DC. Strengthening mechanisms in aluminum containing coherent Al3Sc precipitates and incoherent Al2O3 dispersoids. Acta Materialia. 2007;55(4):1299-308. DOI: 10.1016/j.actamat.2006.10.004.
  • [11] Samaee M, Najafi S, Eivani AR, Jafarian HR, Zhou J. Simultaneous improvements of the strength and ductility of fine-grained AA6063 alloy with increasing number of ECAP passes. Mater Sci Eng A. 2016;669:350-7. DOI: 10.1016/j.msea.2016.05.070.
  • [12] Lin G, Zhang Z, Wang H, Zhou K, Wei Y. Enhanced strength and electrical conductivity of Al-Mg-Si alloy by thermo-mechanical treatment. Mater Sci Eng A. 2016;650:210-7. DOI: 10.1016/j.msea.2015.10.050.
  • [13] Liu CH, Chen J, Lai YX, Zhu DH, Gu Y, Chen JH. Enhancing electrical conductivity and strength in Al. alloys by modification of conventional thermo-mechanical process. Mater Des. 2015;87:1-5. DOI: 10.1016/j.matdes.2015.07.133.
  • [14] Valiev RZ, Murashkin MY, Sabirov I. A nanostructural design to produce high-strength Al alloys with enhanced electrical conductivity. Scr Mater. 2014;76:13-6. DOI: 10.1016/j.scriptamat.2013.12.002.
  • [15] Bobruk EV, Murashkin MY, Kazykhanov VU, Valiev RZ. Aging behavior and properties of ultrafine-grained aluminum alloys of Al-Mg-Si system. Rev Adv Mater Sci. 2012;31:109-15. Available from: www.ipme.ru/e-journals/RAMS/no_23112/03_23112_bobruk.html.
  • [16] Cubero‐Sesin JM, Arita M, Horita Z. High strength and electrical conductivity of Al‐Fe alloys produced by synergistic combination of high‐pressure torsion and aging. Adv Eng Mater. 2015;17(12):1792-803. DOI: 10.1002/adem.201500103.
  • [17] Luo J, Gao J, Wang A, Huang J. Bulk nanostructured materials based on two-dimensional building blocks: a roadmap. ACS Nano. 2015;9(10):9432-6. DOI: 10.1021/acsnano.5b05259.
  • [18] Xu C, Schroeder S, Berbon PB, Langdon TG. Principles of ECAP–Conform as a continuous process for achieving grain refinement: Application to an aluminum alloy. Acta Mater. 2010;58(4):1379-86. DOI: 10.1016/j.actamat.2009.10.044.
  • [19] Dadbakhsh S, Taheri AK, Smith CW. Strengthening study on 6082 Al alloy after combination of aging treatment and ECAP process. Mater Sci Eng A. 2010;527(18-19):4758-66. DOI: 10.1016/j.msea.2010.04.017.
  • [20] Valiev RZ, Islamgaliev RK, Alexandrov IV. Bulk nanostructured materials from severe plastic deformation. Prog Mater Sci. 2000;45(2):103-89. DOI: 10.1016/S0079-6425(99)00007-9.
  • [21] Shuai L, Li Z, Zhang DT, Tong YX, Li L. The mechanical property and electrical conductivity evolution of Al-Fe alloy between room temperature and elevated temperature ECAP. Vacuum. 2021;183:109813. DOI: 10.1016/j.vacuum.2020.109813.
  • [22] Liu W, Ma H, Walsh A. Advance in photonic crystal solar cells. Renew Sust Energy Rev. 2019;116:109436. DOI: 10.1016/j.rser.2019.109436.
  • [23] Zhang X, Zang C, Ma H, Wang Z. Study on removing calcium carbonate plug from near wellbore by high-power ultrasonic treatment. Ultrason Sonochem. 2020:104515. DOI: 10.1016/j.ultsonch.2019.03.006.
  • [24] Ma H, Zhang X, Ju F, Tsai S-B. A study on curing kinetics of nano-phase modified epoxy resin. Sci Rep. 2018;8:3045. DOI: 10.1038/s41598-018-21208-0.
  • [25] Ma H, Tsai S-B. Design of research on performance of a new iridium coordination compound for the detection of Hg2+. Int J Env Res Public Health. 2017;14:1232. DOI: 10.3390/ijerph14101232.
  • [26] Baffari D, Reynolds AP, Masnata A, Fratini L, Ingarao G. Friction stir extrusion to recycle aluminum alloys scraps: energy efficiency characterization. J Manuf Processes. 2019;43:63-9. DOI: 10.1016/j.jmapro.2019.03.049.
  • [27] Srinivasan R, Cherukuri B, Chaudhury PK. Scaling up of equal channel angular pressing (ECAP) for the production of forging stock. Mater Sci Forum. 2006;503:371-8. DOI: 10.4028/www.scientific.net/MSF.503-504.371.
  • [28] Hakala M, Nygård K, Manninen S, Huitari S, Buslaps T, Nilsson A, et al. J Chem Phys. 2006:125:084504. DOI: 10.1063/1.2273627.
  • [29] Simeonov V. Chem Didact Ecol Metrol. 2019;24(1-2):7-21. DOI: 10.2478/cdem-2019-0001.
Uwagi
1. This work was supported by the Fundamental Research Funds for the Central Universities [Grant number HEUCF201836], the Fundamental Research Funds for the Central Universities and Key Laboratory of Superlight Materials & Surface Technology (Harbin Engineering University), Ministry of Education and Jiangsu Changfeng Cable Co. LTD.
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cace5b43-d704-4bb4-b527-a4df4cc8455d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.