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Summary 
In recent years wind energy is the fastest growing branch of the power generation industry. The 

largest cost for the wind turbine is its maintenance. A common technique to decrease this cost is a 
remote monitoring based on vibration analysis. Growing number of monitored turbines requires an 
automated way of support for diagnostic experts. As full fault detection and identification is still a 
very challenging task, it is necessary to prepare an early-warning tool, which would focus the 
attention on cases which are potentially dangerous. There were several attempts to develop such 
tools, in most cases based on various classification methods. The techniques that have been used 
so far are based on the vibration signals analysis in which the signals are considered as time series. 
However such approach has crucial limitations. Therefore, new approaches for wind turbines 
intelligent monitoring are worked out. Artificial intelligence systems are ones of promising. In this 
paper such approach is proposed - a vibration signal spectrum is considered as a pixel matrix 
which is processed using deterministic cellular automaton (DCA). It turns out that such processing 
allows us to detect pre-failure states. 

  
Keywords: cellular neural networks, wind turbines, gears, intelligent monitoring 

 
PRZETWARZANIE SYGNA ÓW DRGANIOWYCH  PRZY POMOCY AUTOMATÓW  

KOMÓRKOWYCH  W CELU INTELIGENTNEGO MONITORINGU TURBIN WIATROWYCH 
 

Streszczenie  
W ostatnich latach energetyka wiatrowa jest najszybciej rozwijaj c  si  ga zi  przemys u 

energetycznego. Najkosztowniejsza w turbinach wiatrowych jest ich konserwacja. Popularn  
technik  obni aj c  te koszta jest zdalny monitoring bazuj cy za analizie wibracyjnej. Rosn ca 
liczba monitorowanych turbin zmusza do znalezienia automatycznego wsparcia dla 
diagnozuj cych ekspertów. Poniewa  pe na detekcja i identyfikacja uszkodze  jest wci  wielkim 
wyzwaniem, potrzebne jest okre lenie narz dzia zdolnego wychwytywa  jak najwcze niejsze 
symptomy awarii. Podejmowane by y próby stworzenia takich narz dzi, opieraj c si  na ró nych 
metodach klasyfikacji. U ywane techniki od d u szego czasu bazuj  na analizie sygna ów 
wibracyjnych, które rozpatrywane s  jako szeregi czasowe. Takie podej cie, jednak e, ma istotne 
ograniczenia. Dlatego te  poszukuje si  nowych metod, które mog  by  skutecznie u yte do 
inteligentnego monitoringu turbin wiatrowych. Systemy sztucznej inteligencji wydaj  si  by  
obiecuj cym podej ciem. W niniejszej publikacji testowana jest u yteczno  tego podej cia - 
badane widmo sygna u wibracyjnego jest rozumiane jako macierz komórek, które konstytuuj  
automat komórkowy. Przetwarzanie sygna ów przy pomocy powy szego automatu pozwoli  
wykrywa  stany przedawaryjne.  

 
           S owa kluczowe: deterministyczne automaty komórkowe, turbiny wiatrowe, przek adnie,  

inteligentny  monitoring 
 

1. INTRODUCTION 
 

In recent years wind energy is the fastest 
growing branch of the power generation industry. 
The average yearly growth in the years 1997-2003 

achieved 32% in the United States and 22% in the 
European Union [6] and these figures will hold for at 
least the next decade. The distribution of costs 
during the life cycle of the unit for wind energy is 
significantly different from that of traditional, fossil 
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fired units [6]. First of all, initial investment costs 
are relatively higher, whereas in traditional units 
cost of fuel plays important role - usually it is the 
second largest cost. After commissioning, the largest 
cost for a wind turbine (WT for abbreviation) is its 
maintenance. With proper maintenance policies, 
wind turbines can achieve the highest level of 
availability in the power generation sector - even up 
to 98%.  

Studies have shown that approximately 80% of 
all fractures are caused by machinery fatigue and 
only 20% by a static overload. Therefore, studies 
concerning variations of operational conditions in a 
wind turbine mechanical system are crucial for their 
engineering. Such studies have important practical 
application, as the wind turbine maintenance, as it 
has been mentioned,  generates the largest part of the 
cost of its operation [18]. A common technique to 
decrease this cost is a condition monitoring 
[17,20,21,27], first of all continuous monitoring of 
the drivetrain of a wind turbine. Therefore, condition 
monitoring of wind turbines, including fault 
diagnostics, in particular at the early stage of a fault 
occurrence or even participatory actions, is an 
essential problem in wind turbines engineering in 
particular [17,20,24] and in rotating machinery 
engineering in general [3]. There were several 
attempts to develop various monitoring tools, in 
most cases based on various classification methods. 
Some of them are based on artificial neural networks 
(ANNs for abbreviation). 

So far the techniques that has been used for gears 
monitoring are based on the vibration signals 
analysis in which the signals are considered as time 
series. However in this paper a vibration signal 
spectrum is considered as a pixel matrix which is 
processed using deterministic cellular automaton 
(DCA for abbreviation) - basic information about 
DCA and cellular ANNs, that are complex version 
of DCAs,  can be found in [13,14,15,16,22,23,26]. 
Such processing allows us to detect pre-failure 
states. 

This paper is a continuation of studies 
concerning monitoring wind turbines states [1,4,19], 
modelling its loads [2,12] and monitoring and 
diagnosis gears faults [6,7,8,9,10,11,28]. 

This article is organizing in the following way. 
In Section 2 wind turbines mechanics is described. 
Basic facts concerning deterministic cellular 
automata are briefly recalled in Section 3. The 
proposed approach and results are presented in 
Section 4.  

 
2. WIND TURBINE MECHANICS 

 
The faults which are sought in wind turbines are 

primarily of mechanical origin. The wind turbine 
with the gearbox, which is the most popular type, 
can be described in the following way. The main 
rotor with three blades is supported by the main 
bearing and transmits the torque to the planetary 

gear. The main rotor is connected to the plate which 
is the gear input. The planetary gear has three 
planets, with their shafts attached to the plate. The 
planets roll over the stationary ring and transmit the 
torque to the sun. The sun shaft is the output of the 
planetary gear. The sun drives the two-stage parallel 
gear which has three shafts: the slow shaft connected 
to the sun shaft, the intermediate shaft and the fast 
shaft, which drives the generator. The overall gear 
ratio is in the range of 1:100. The generator 
produces alternating current of slightly varying 
frequency. This current is converted first into direct 
current power and then into alternating current 
power of frequency equal to the grid frequency. 
Electric transformations are performed by the 
controller at the base of the tower - see Fig.1. 

 

 
 

Figure 1: The mechanical structure of the wind 
turbine. Location of vibration measurement sensors 

is shown by An symbols 
 
In the field of vibrodiagnostics, a machine 

operational state is understood as an accepted range 
of machines operational points enabling referential 
analysis. In practice, machine operating point is 
defined by values of available measurements of 
physical quantities such as speed, load, pressure, 
temperature, etc., usually called machine process 
parameters [19]. Typically, from each vibration 
record, a set of diagnostic indicators is calculated 
known as trends. Each trend point is a combination 
of representation of true machine technical condition 
and behaviour, machines current operating point, 
measurement error and random factor. In a typical 
condition monitoring set up, each trend is tracked 
against a pre-calculated threshold value. In this case, 
operational states (shortly called states) are used for 
data classification during the data acquisition 
process. On the basis of these states, data is 
combined into sets, which are assumed to represent a 
particular machine. Consequently, the overall 
number of defined diagnostic indicators and 
estimators is equal to the number of indicators and 
estimators multiplied by the number of states. 
Therefore, from operators point of view, it is 
desirable to have as little states as possible. On the 
other hand, from reliable-diagnostics point of view, 
in order to minimize the fluctuation of machines 
operating points, it is desirable to define ranges of 
states as low as possible. In this case, the state 
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configuration would result either in single 
operational state with low permissible fluctuation of 
operational parameters or in a large number of 
operational state with low permissible fluctuations 
of operational parameters. 
 
3. DETERMINISTIC CELLULAR AUTOMATA 

 
In DCAs, that are the simples type of cellular 

automata, the spatial domain of the model is divided 
into a fix lattice and each lattice point, a cell, has a 
state associated with it. The cell state at the next 
time step is determined solely from the earlier state 
of the cell and its neighbours. The lattice of cells can 
have any dimension but two-dimensional DCAs are 
considered most frequently and such DCA is used in 
the experiment described in this paper. The used 
DCA is also an automaton with completely defined 
rules. This means that if the initial state of the 
automaton is known, all subsequent states are found 
by iterating and updating synchronously. In these 
types of automata each state of the whole automaton 
is an array of states of cells. As it has been 
mentioned, cells influence and are influenced by 
neighbours, in the simplest cane the nearest ones. 
However, a neighbourhood in two dimensions can 
be defined in several different ways. In a square 
lattice both only four cells, conventionally addressed 
as points of the compass by N,W,E,S, and also the 
ones that can be reached diagonally: NE,NW,SE,SW 
can be regarded as the nearest neighbourhood. 
However, the lattice can have also hexagonal 
organization and then each cell has six nearest 
neighbours. The general rule of an cellular 
automaton evolution is given by the equation  

                Ct+1(i)=F(Ct+1(i), Ct+1(j)),                (1) 
where Ct+1(i) denotes the state of the i-th cell at 

the t-th iteration. The index j numerates cells from 
the neighbourhood that is taken into consideration. 
Each cell can take only the finite number of states. 
In the simplest cellular automata, the binary ones, 
each cell can be only in one of the two states: 0 or 1. 
 
4. RESULTS 

 
The used data are real ones recorded on a 1.5 

MW wind turbine, located in Germany. The data 
were available courtesy of the company SeaCom 
GmbH from Herne, Germany. The measurement 
system consisted of signal conditioning unit 
(PA8000D type form EC Electronics), data 
acquisition card (USB-6210 type from National 
Instruments) and dedicated data acquisition 
software. The software was developed in the 
LabView environment and run on the ARK-3384 
embedded computer. The measured wind speed 
signal was acquired from the wind turbine 
controller. The system also has acquired the turbine 
output power and six vibration channels. A CA has 
been applied to processing signals obtained from the 
single vibration channel. 

A fault classification system for vibration signals 
was created using a cellular automaton. System 
classifies time series of vibration signals. That series 
can be presented in the form of charts. A cellular 
automaton is designed to process that charts. 

The automaton  is based on a two-dimensional 
square lattice of cells with radius of neighbourhood 
equal to 1. The network topology is defined in such 
a way, that all the cells N,W,S,E,NW,NE,SW,SE 
constitute the neighbourhood - see Fig.2. Each cell 
has a binary value (0 or 1). The cell value represents 
a segment of the chart. Network is constructed using 
mentioned rules and after that the classification is 
being done in steps described in following 
subsections. 

 
Figure 2: Two-dimensional DCA with radius of 

neighbourhood r=1: the red cell has nine neighbours 
- the eight blue cells and itself 

The example of the vibration signal is presented in 
Fig.3. This time series can be divided into three 
intervals. The first one corresponds to the constant 
average trend. In the second one the average trend 
increases whereas in the third one the average trend 
has a constant value but grater than the value on the 
average trend in the first interval. The second 
interval corresponds to the failure. Therefore, the 
intelligent monitoring system should recognize the 
border between the first and the second interval as 
the pre-failure state. 
 
4.1. Network initialization 

 
The vibration signals chart is considered to be a 

visual pattern, not a numerical time series. Thus, it is 
regarded to be a binary matrix. The size of a grid 
cell is determined manually. Cell length and width 
can be different. Each grid cell reflects one network 
cell. If there is an experimental point inside the grid 
cell then that network cell is selected and is marked 
as 1. An example of network cells is presented in 
Fig.3. 
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Figure 3: The DCA after initialization 
 
4.2. Network processing 

After initialization the network changes states of 
cells in an iteration process. Transfer function of 
cells is defined as the Surface Tension rule. The rule 
of the evolution of a cell state, defined in general by 
the formula (1), is given in such a way that the state 
of each cell Ct+1(i) in the iteration (t+1)-th is equal 
to: 
 

0,  when a sum of cells neighbouring to the 
cell ct (including that cell) is one of the 
following: 0, 1, 2, 3 or 5, 
1,  otherwise. 

 
After a specified number of iterations the processing 
is stopped. 
 
4.3. Final rating 

At the final state dominate and separate groups 
of cells having value 1 are counted. If there is more 
then one group then it means that some fault 
occurred. Periods of time in which the fault could 
have occurred are points of the time series having no 
cells with value equal to 1. Counting is done 
manually, but some algorithms to do that 
automatically could be specified. 

A few steps of a cellular automaton state 
evolution are presented in figures 4, 5 and 6. There 
are two dominate separate groups of cells, therefore 
data can be marked as having a fault. The border 
between two obtained clusters corresponds - see 
Fig.6 - corresponds to the point when the average 
trend starts to increase - see Fig.3. Thus, the CA 
recognized the pre-failure state properly. 
 

 

Figure 4: The cellular automaton after the first 
iteration 

 

Figure 5: The cellular automaton after 10 iterations 
 

 

Figure 6: The cellular automaton after 100 iterations 
 
5. CONCLUDING REMARKS 
 
      As it has been mentioned, intelligent monitoring 
is crucial in wind turbines exploitation. On the other 
hand, there are very few attempts to create system  
for intelligent monitoring based on artificial 
intelligence - see [17] and references given there. 
The experiments described in this paper show that 
DCAs can be an effective tool for such task 
performing - the symptoms of a turbine damage can 
be detected using them. The described approach was 
based on the simple cellular automaton. The signal 
processing based on more complex systems of this 
type, i.e. cellular neural networks [13,14,22,23,25], 
should be tested as well. It should be stressed 
however, that the obtained results are preliminary 
ones – only one vibration channel has been used 
and, according to the lack of data obtained during 
the break down moment, only one case has been 
considered. Usually, a few vibration channels are 
observed simultaneously - see [2]. The monitoring 
module based on DCAs is planned to be a module of 
hybrid expert system for intelligent monitoring and 
fault diagnostics in wind turbines based on ANNs. 
Though it is planned that ART-type artificial neural 
networks will play a crucial role in the intelligent 
monitoring system, according to the results obtained 
in [1,4,5], the cellular automata can be used as  
specialised modules for detecting pre-failure states 
in bearings.  
      It should be also mentioned that the method 
presented in this paper has been referred to gears in 
wind turbines and the experiment has been 
performed for vibration data obtained from wind 
turbines. However, the method can be applied also 
in any rotational machines working under variable 
load. 
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