PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Finite element analysis on pushing the molar backwards using invisible aligner with different migration displacement

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper examines the biomechanical mechanism behind the effect of the invisible aligner technique on tooth movement processes. Methods: To compare the effects of different target positions on tooth movement and the periodontal ligament (PDL), two kinds of aligners were designed to provide displacements of 0.2 mm (Model A) and 0.3 mm (Model B). Different displacements of the maxillary second molar were simulated using the finite element (FE) method. Results: The results of numerical simulations showed that the maximum stress was in the PDL of the distal surface and the palatal surface. The stress of the PDL in Model B was larger than Model A, with the displacement of the second molar 0.027 mm in Model A, by 44.9% lesser than that in Model B. Conclusions: The aligner that provided a displacement of 0.2 mm was more suitable for pushing the second molar backward in the initial stage. During the tooth movement processes, the displacement of the crown was larger than that of the root and the displacement decreased gradually from the crown to the root. In addition, the displacement and rotation of teeth during orthodontic treatment were measured and analysed.
Rocznik
Strony
115--123
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
autor
  • Center of Stomatology, China Japan Friendship Hospital, Beijing, China
  • Department of Stomatology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
autor
  • Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
autor
  • Peking University Academy for Advanced Interdisciplinary Studies, Beijing, China
autor
  • Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
Bibliografia
  • [1] ASIRY M.A., Biological aspects of orthodontic tooth movement: A review of literature, Saudi J. Biol. Sci., 2018, 25, 1027–1032.
  • [2] BARONE S., PAOLI A., RAZIONALE A.V., SAVIGNANO R., Computer aided modelling to simulate the biomechanical behaviour of customised orthodontic removable appliances, Int. J. Interact. Des. Manuf., 2016, 10, 387–400.
  • [3] BENAZZI S., KULLMER O., GROSSE I.R., WEBER G.W., Brief communication: comparing loading scenarios in lower first molar supporting bone structure using 3D finite element analysis, Am. J. Phys. Anthropol., 2012, 147, 128–134.
  • [4] CABALLERO G.M., CARVALHO F.O.A., HARGREAVES B.O., ARAÚJO H.H., JÚNIOR P.A.A.M., OLIVEIRA D.D., Mandibular canine intrusion with the segmented arch technique: A finite element method study, Am. J. Orthod. Dentofac. Orthop., 2015, 147, 691–697.
  • [5] CAI Y., YANG X., HE B., YAO J., Finite element method analysis of the periodontal ligament in mandibular canine movement with transparent tooth correction treatment, BMC Oral Health, 2015, 15, 1–11.
  • [6] CATTANEO P.M., DALSTRA M., MELSEN B., Moment-to-force ratio, center of rotation, and force level: A finite element study predicting their interdependency for simulated orthodontic loading regimens, Am. J. Orthod. Dentofac. Orthop., 2008, 133, 681–689.
  • [7] COMBA B., PARRINI S., ROSSINI G., CASTROFLORIO T., DEREGIBUS A., A three-dimensional finite element analysis of upper-canine distalization with clear aligners, composite attachments, and class II elastics, J. Clin. Orthod., 2017, 51, 24–28.
  • [8] ELKHOLY F., MIKHAIEL B., SCHMIDT F., LAPATKI B.G., Mechanical load exerted by PET-G aligners during mesial and distal derotation of a mandibular canine: An in vitro study, J. Orofac. Orthop., 2017, 78, 1–9.
  • [9] FONTANA M., COZZANI M., CAPRIOGLIO A., Soft tissue, skeletal and dentoalveolar changes following conventional anchorage molar distalization therapy in class II non-growing subjects: a multicentric retrospective study, Prog. Orthod., 2012, 13, 30–41.
  • [10] GOMEZ J.P., PEÑA F.M., MARTÍNEZ V., GIRALDO D.C., CARDONA C.I., Initial force systems during bodily tooth movement with plastic aligners and composite attachments: A three-dimensional finite element analysis, Angle Orthod., 2015, 85, 454–460.
  • [11] GRÖNING F., BRIGHT J.A., FAGAN M.J., O’HIGGINS P., Improving the validation of finite element models with quantitative full-field strain comparisons, J. Biomech., 2012, 45, 1498–1506.
  • [12] GRÖNING F., FAGAN M., O’HIGGINS P., Modeling the Human Mandible Under Masticatory Loads: Which Input Variables are Important?, Anat. Rec., 2012, 295, 853–863.
  • [13] GUPTA M., MADHOK K., KULSHRESTHA R., CHAIN S., KAUR H., YADAV A., Determination of stress distribution on periodontal ligament and alveolar bone by various tooth movements–A 3D FEM study, J. Oral Biol. Craniofac. Res., 2020, 10, 758–763.
  • [14] HAHN W., ZAPF A., DATHE H., FIALKA-FRICKE J., FRICKE- -ZECH S., GRUBER R., SADAT-KHONSARI R., Torquing an upper central incisor with aligners – acting forces and biomechanical principles, Eur. J. Orthod., 2010, 32, 607–613.
  • [15] HERAVI F., SALARI S., TANBAKUCHI B., LOH S., AMIRI M., Effects of crown-root angle on stress distribution in the maxillary central incisors’ PDL during application of intrusive and retraction forces: a three-dimensional finite element analysis, Prog. Orthod., 2013, 14, 1–10.
  • [16] HEDAYATI Z., SHOMALI M., Maxillary anterior en masse retraction using different antero-posterior position of mini screw: a 3D finite element study, Prog. Orthod., 2016, 17, 1–7.
  • [17] HOHMANN A., KOBER C., YOUNG P., DOROW C., GEIGER M., BORYOR A., SANDER F.G., Influence of different modeling strategies for the periodontal ligament on finite element simulation results, Am. J. Orthod. Dentofac. Orthop., 2011, 139, 775–783.
  • [18] HOHMANN A., WOLFRAM U., GEIGER M., BORYOR A., SANDER C., FALTIN R., SANDER F.G., Periodontal Ligament Hydrostatic Pressure with Areas of Root Resorption after Application of a Continuous Torque Moment, Angle Orthod., 2007, 77, 653–659.
  • [19] HOHMANN A., WOLFRAM U., GEIGER M., BORYOR A., KOBER C., SANDER C., SANDER F.G., Correspondences of hydrostatic pressure in periodontal ligament with regions of root resorption: A clinical and a finite element study of the same human teeth, Comput. Meth. Prog. Bio., 2009, 93, 155–161.
  • [20] KOJIMA Y., FUKUI H., Numerical simulations of canine retraction with T-loop springs based on the updated momentto-force ratio, Eur. J. Orthod., 2012, 34, 10–18.
  • [21] KRISHNAN V., DAVIDOVITCH Z., Cellular, molecular, and tissue-level reactions to orthodontic force, Am. J. Orthod. Dentofac. Orthop., 2006, 129, 469.e1–469.e32.
  • [22] KUO E., MILLER R.J., Automated custom-manufacturing technology in orthodontics, Am. J. Orthod. Dentofac. Orthop., 2003, 123, 578–581.
  • [23] LI Y., JACOX L.A., LITTLE S.H., KO C.C., Orthodontic tooth movement: The biology and clinical implications, Kaohsiung J. Med. Sci., 2018, 34, 207–214.
  • [24] LIMBERT G., MIDDLETON J., A compressible transversely isotropic hyperelastic constitutive law for modelling the periodontal ligament: analytical and computational aspects, Acta. Bioeng. Biomech., 2003, 4, 137–138.
  • [25] NIKOLAUS A., CURREY J.D., LINDTNER T., FLECK C., ZASLANSKY P., Importance of the variable periodontal ligament geometry for whole tooth mechanical function: a validated numerical study, J. Mech. Behav. Biomed. Mater., 2017, 67, 61–73.
  • [26] NYASHIN Y.I., NYASHIN M.Y., Biomechanical modelling of periodontal ligament behaviour under various mechanical loads, Acta. Bioeng. Biomech., 2000, 2, 67–74.
  • [27] PROVATIDIS C.G., A comparative FEM-study of tooth mobility using isotropic and anisotropic models of the periodontal ligament, Med. Eng. Phys., 2000, 22, 359–370.
  • [28] REINOSO M.R., CIVERA M., BURGIO V., BERGAMIN F., RUIZ O.G., PUGNO N.M., SURACE C., 3D printing and testing of rose thorns or limpet teeth inspired anchor device for tendon tissue repair, Acta. Bioeng. Biomech., 2021.
  • [29] SARKAR S., SAHU T.P., DATTA A., CHANDRA N., CHAKRABORTY A., DATTA P., CHOWDHURY A.R., Mechanical response at peri-implant mandibular bone for variation of pore characteristics of implants: A Finite Element Study, Acta. Bioeng. Biomech., 2019, 21.
  • [30] TANNE K., NAGATAKI T., INOUE Y., SAKUDA M., BURSTONE C.J., Patterns of initial tooth displacements associated with various root lengths and alveolar bone heights, Am. J. Orthod. Dentofac. Orthop., 1991, 100, 66–71.
  • [31] TURPIN D.L., Clinical trials needed to answer questions about Invisalign, Am. J. Orthod, Dentofacial Orthop., 2005, 127, 157–158.
  • [32] VARDIMON A.D., OREN E., BEN-BASSAT Y., Cortical bone remodeling/tooth movement ratio during maxillary incisor retraction with tip versus torque movements, Am. J. Orthod. Dentofac. Orthop., 1998, 114, 520–529.
  • [33] WANG D., AKBARI A., JIANG F., LIU Y., CHEN J., The effects of different types of periodontal ligament material models on stresses computed using finite element models, Am. J. Orthod. Dentofac. Orthop., 2022, 162, e328–e336.
  • [34] WEIR T., Clear aligners in orthodontic treatment, Aust. Dent. J., 2017, 62, 58–62.
  • [35] YOKOI Y., ARAI A., KAWAMURA J., UOZUMI T., USUI Y., OKAFUJI N., Effects of Attachment of Plastic Aligner in Closing of Diastema of Maxillary Dentition by Finite Element Method, J. Healthc. Eng., 2019, 1–6.
  • [36] ZHENG M., LIU R., NI Z., YU Z., Efficiency, effectiveness and treatment stability of clear aligners: A systematic review and meta-analysis, Orthod. Craniofac. Res., 2017, 20, 127–133.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cac966be-632e-45cb-bec2-44523e42f37b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.