PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Presenting a mathematical programming model for routing and scheduling of cross-dock and transportation

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Przedstawienie matematycznego modelu programowania do wyznaczania tras i harmonogramowania między dokami i transportem
Języki publikacji
EN
Abstrakty
EN
Cross-docking is the practice of unloading goods from inbound delivery vehicles and loading them directly onto outbound vehicles. Cross-docking can streamline supply chains and help them move goods to markets faster and more efficiently by eliminating or minimizing warehouse storage costs, space requirements, and inventory handling. Regarding their short shelf-life, the movement of perishable commodities to cross-dock and their freight scheduling is of great importance. Accordingly, the present study developed a Mixed-Integer linear Programming (MILP) model for routing and scheduling, cross-docking, and transportation in a reverse logistics network. The model was multi-product and multi-level and focused on minimizing the logistics network costs to increase efficiency and maximizing the consumption value of delivered products. Considering cost minimization (i.e., earliness and tardiness penalty costs of customer order delivery, the inventory holding costs at the temporary storage area of the cross-dock and costs of crossover and use of outbound vehicles) as well as uncertainty in customer demand for perishable products, the model was an NP-hard problem. In this model, the problem-solving time increased exponentially according to the problem dimensions; hence, this study proposed an efficient method using the NSGA II algorithm.
PL
Cross-docking to praktyka polegająca na rozładowywaniu towarów z przychodzących samochodów dostawczych i ładowaniu ich bezpośrednio na pojazdy wyjeżdżające. Cross-docking może usprawnić łańcuchy dostaw i pomóc im szybciej i wydajniej przemieszczać towary na rynki, eliminując lub minimalizując koszty magazynowania, wymagania przestrzenne i obsługę zapasów. Ze względu na ich krótki okres przydatności do spożycia ogromne znaczenie ma przemieszczanie łatwo psujących się towarów do cross-dockingu i planowanie ich przewozu. W związku z tym w niniejszym badaniu opracowano model programowania liniowego (MILP) z mieszaną liczbą całkowitą do wyznaczania tras i harmonogramów, przeładunku towarów i transportu w sieci logistyki zwrotów. Model był wieloproduktowy i wielopoziomowy oraz koncentrował się na minimalizacji kosztów sieci logistycznej w celu zwiększenia wydajności i maksymalizacji wartości konsumpcyjnej dostarczanych produktów. Uwzględniając minimalizację kosztów (tj. Koszty karne za wczesne i spóźnione dostawy zamówień do klienta, koszty magazynowania w tymczasowej strefie składowania cross-docku oraz koszty crossovera i wykorzystania pojazdów wychodzących), a także niepewność dotyczącą zapotrzebowania klientów na łatwo psujące się produkty model był problemem NP-trudnym. W tym modelu czas rozwiązywania problemów wzrastał wykładniczo zgodnie z wymiarami problemu; stąd w badaniu zaproponowano skuteczną metodę wykorzystującą algorytm NSGA II.
Rocznik
Strony
545--564
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
  • Department of Industrial Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
  • Department of Industrial Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
  • Department of Industrial Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran
  • Department of Industrial Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
Bibliografia
  • 1. Ardakani, A. (Arsalan), Fei, J., (2020). A systematic literature review on uncertainties in cross-docking operations. Modern Supply Chain Research and Applications, 2(1), 2-22.
  • 2. Bagherpour, M., Feylizadeh, M. R. and Cioffi, D. F., (2012). Time, cost, and quality trade-offs in material requirements planning using fuzzy multi-objective programming. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 226(3), 560-564.
  • 3. Baniamerian, A., Bashiri, M. and Tavakkoli-Moghaddam, R., (2019). Modified variable neighborhood search and genetic algorithm for profitable heterogeneous vehicle routing problem with cross-docking. Applied Soft Computing Journal, 75, 441-460.
  • 4. Benaissa, M., Benabdelhafid, A., (2010). A multi-product and multi-period facility location model for reverse logistics. Polish Journal of Management Studies, 2, 7-19.
  • 5. Feylizadeh, M. R., Bagherpour, M., (2018). Manufacturing performance measurement using fuzzy multi-attribute utility theory and Z-number. Transactions of FAMENA, 42(1), 37-49.
  • 6. Feylizadeh, M. R., Modarres, M. and Bagherpour, M., (2008). Optimal Crashing of Multi-period Multiproduct Production Planning Problems. World Applied Sciences Journal, 4(4), 499-505.
  • 7. Gardas, B. B., Raut, R. D. and Narkhede, B., (2018). Reducing the exploration and production of oil: Reverse logistics in the automobile service sector. Sustainable Production and Consumption, 16, 141-153.
  • 8. Gelareh, S., Glover, F., Guemri, O., Hanafi, S., Nduwayo, P. and Todosijević, R., (2020). A comparative study of formulations for a cross-dock door assignment problem. Omega (United Kingdom), 91, 102015.
  • 9. He, P., Li, J., (2019). The two-echelon multi-trip vehicle routing problem with dynamic satellites for crop harvesting and transportation. Applied Soft Computing Journal, 77, 387-398.
  • 10. Hendalianpour, A., (2020). Optimal lot-size and Price of Perishable Goods: A novel Game-Theoretic Model using Double Interval Grey Numbers. Computers & Industrial Engineering, 149, 106780.
  • 11. Hendalianpour, A., (2018). Mathematical Modeling for Integrating Production-Routing-Inventory Perishable Goods: A Case Study of Blood Products in Iranian Hospitals. International Conference on Dynamics in Logistics, 125-136.
  • 12. Hendalianpour, A., Fakhrabadi, M., Zhang, X., Feylizadeh, M. R., Gheisari, M., Liu, P. and Ashktorab, N., (2019). Hybrid Model of IVFRN-BWM and Robust Goal Programming in Agile and Flexible Supply Chain, a Case Study: Automobile Industry. IEEE Access, 7, 71481-71492.
  • 13. Hendalianpour, A., Razmi, J., (2017). Customer satisfaction measurement using fuzzy neural network. Decision Science Letters, 6(2), 193-206.
  • 14. Jansen, W., (2019). Efficient Routing and Planning within the Complex Logistical Network : Based on the Integration of a New Warehouse, AGV Transports and Increased Transportation Rates. http://essay.utwente.nl/77465/%0Ahttp://purl.utwente.nl/essays/77465
  • 15. Kasravi, M., Mahmoudi, A. and Feylizadeh, M. R., (2019). A novel algorithm for solving resource-constrained project scheduling problems: a case study. Journal of Advances in Management Research.
  • 16. Khalid, M. S., Sahu, D. K., (2020). Pricing Strategies and Methods of Perishable Goods: A Critical Review. Studies in Indian Place Names, 40(3), 1498-1509.
  • 17. Khodaparasti, S., Bruni, M. E., Beraldi, P., Maleki, H. R. and Jahedi, S., (2018). A multi-period location-allocation model for nursing home network planning under uncertainty. Operations Research for Health Care, 18, 4-15.
  • 18. Kuşakcı, A. O., Ayvaz, B., Cin, E. and Aydın, N., (2019). Optimization of reverse logistics network of End of Life Vehicles under fuzzy supply: A case study for Istanbul Metropolitan Area. Journal of Cleaner Production, 215, 1036-1051.
  • 19. Liao, T. Y., (2018). Reverse logistics network design for product recovery and remanufacturing. Applied Mathematical Modelling, 60, 145-163.
  • 20. Mancini, S., (2017). The Hybrid Vehicle Routing Problem. Transportation Research Part C: Emerging Technologies, 78, 1-12.
  • 21. Moldabekova, A., Zhidebekkyzy, A., Akhmetkaliyeva, S. and Baimukhanbetova, E., (2020). Advanced technologies in improving the management of logistics services: bibliometric network analysis. Polish Journal of Management Studies, 21, 211-223.
  • 22. Mousavi, S. M., Vahdani, B., (2017). A robust approach to multiple vehicle location- routing problems with time windows for optimization of cross-docking under uncertainty. Journal of Intelligent and Fuzzy Systems, 32(1), 49-62.
  • 23. Nasiri, M. M., Rahbari, A., Werner, F. and Karimi, R., (2018). Incorporating supplier selection and order allocation into the vehicle routing and multi-cross-dock scheduling problem. International Journal of Production Research, 56(19), 6527-6552.
  • 24. Nikolopoulou, A. I., Repoussis, P. P., Tarantilis, C. D. and Zachariadis, E. E., (2019). Adaptive memory programming for the many-to-many vehicle routing problem with cross-docking. Operational Research, 19(1), 1-38.
  • 25. Rabbani, M., Farrokhi-Asl, H. and Rafiei, H., (2016). A hybrid genetic algorithm for waste collection problem by heterogeneous fleet of vehicles with multiple separated compartments. Journal of Intelligent and Fuzzy Systems, 30(3), 1817-1830.
  • 26. Rahbari, A., Nasiri, M. M., Werner, F., Musavi, M. M. and Jolai, F., (2019). The vehicle routing and scheduling problem with cross-docking for perishable products under uncertainty: Two robust bi-objective models. Applied Mathematical Modelling, 70, 605-625.
  • 27. Rahimi, M., Ghezavati, V., (2018). Sustainable multi-period reverse logistics network design and planning under uncertainty utilizing conditional value at risk (CVaR) for recycling construction and demolition waste. Journal of Cleaner Production, 172, 1567-1581.
  • 28. Shuang, Y., Diabat, A. and Liao, Y., (2019). A stochastic reverse logistics production routing model with emissions control policy selection. International Journal of Production Economics, 213, 201-216.
  • 29. Srinivas, N., Deb, K., (1994). Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary Computation, 2(3), 221-248.
  • 30. Starostka-Patyk, M., (2019). Defective products management with reverse logistics processes in the furniture production companies. Polish Journal of Management Studies, 20, 502-515.
  • 31. Trochu, J., Chaabane, A. and Ouhimmou, M., (2018). Reverse logistics network redesign under uncertainty for wood waste in the CRD industry. Resources, Conservation and Recycling, 128, 32-47.
  • 32. Wang, X., Yang, F. and Lu, D., (2018). Multi-objective location-routing problem with simultaneous pickup and delivery for urban distribution. Journal of Intelligent and Fuzzy Systems, 35(4), 3987-4000.
  • 33. Yavari, M., Geraeli, M., (2019). Heuristic method for robust optimization model for green closed-loop supply chain network design of perishable goods. Journal of Cleaner Production, 226, 282-305.
  • 34. Yu, H., Solvang, W. D., (2018). Incorporating flexible capacity in the planning of a multi-product multi-echelon sustainable reverse logistics network under uncertainty. Journal of Cleaner Production, 198, 285-303.
  • 35. Zhang, Y., Alshraideh, H. and Diabat, A., (2018). A stochastic reverse logistics production routing model with environmental considerations. Annals of Operations Research, 271(2), 1023-1044.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cac6cfa7-c990-40c0-9e52-14299de6eb3a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.