PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determination of synchronous generator nonlinear model parameters based on power rejection tests using a gradient optimization algorithm

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a method for determining electromagnetic parameters of different synchronous generator models based on dynamic waveforms measured at power rejection. Such a test can be performed safely under normal operating conditions of a generator working in a power plant. A generator model was investigated, expressed by reactances and time constants of steady, transient, and subtransient state in the d and q axes, as well as the circuit models (type (3,3) and (2,2)) expressed by resistances and inductances of stator, excitation, and equivalent rotor damping circuits windings. All these models approximately take into account the influence of magnetic core saturation. The least squares method was used for parameter estimation. There was minimized the objective function defined as the mean square error between the measured waveforms and the waveforms calculated based on the mathematical models. A method of determining the initial values of those state variables which also depend on the searched parameters is presented. To minimize the objective function, a gradient optimization algorithm finding local minima for a selected starting point was used. To get closer to the global minimum, calculations were repeated many times, taking into account the inequality constraints for the searched parameters. The paper presents the parameter estimation results and a comparison of the waveforms measured and calculated based on the final parameters for 200 MW and 50 MW turbogenerators.
Rocznik
Strony
479--488
Opis fizyczny
Bibliogr. 31 poz., rys., wykr., tab.
Twórcy
autor
  • Institute of Electrical Engineering and Computer Science, Silesian University of Technology, 10 Akademicka St., 44-100 Gliwice, Poland
autor
  • Institute of Electrical Engineering and Computer Science, Silesian University of Technology, 10 Akademicka St., 44-100 Gliwice, Poland
autor
  • Institute of Electrical Engineering and Computer Science, Silesian University of Technology, 10 Akademicka St., 44-100 Gliwice, Poland
autor
  • Institute of Electrical Engineering and Computer Science, Silesian University of Technology, 10 Akademicka St., 44-100 Gliwice, Poland
Bibliografia
  • [1] L. Gołębiowski, M. Gołębiowski, and D. Mazur, “Magnetic non-linearity in 3D FEM models of the electric machines”, Academic Journals of Poznan University of Technology 5, 95–111 (2007).
  • [2] 1110‒2002 IEEE Guide for Synchronous Generator Modeling Practices and Application in Power System Stability Analyses, IEEE, 2003.
  • [3] S. Paszek, S. Berhausen, A. Boboń, Ł. Majka, A. Nocoń, M. Pasko, P. Pruski, and T. Kraszewski, Measurement estimation of dynamic parameters of synchronous generators and excitation systems working in the National Power System, Monograph 504, (2013), [in Polish].
  • [4] A.M. El-Serafi and A.S. Abdallah, “Effect of saturation on the steady-state stability of a synchronous machine connected to an infinite bus system”, IEEE Trans. Energy Conversion 6 (3), 514–521 (1991).
  • [5] M.A. Arjona., C. Hernandez, M. Cisneros-Gonzalez, and R. Escarela-Perez, “Estimation of synchronous generator parameters using the standstill step-voltage test and a hybrid genetic algorithm”, Electrical Power and Energy Systems 35, 105–111 (2012).
  • [6] H. Bissig, K. Reichert, and T.S. Kulig, “Modelling and identification of synchronous machines, a new approach with an extended frequency range”, IEEE Trans. Energy Conversion 8 (2), 263–271 (1993).
  • [7] M. Ghomi and Y. Najafi Sarem, “Review of synchronous generator parameters estimation and model identification”, 42nd International Universities Power Engineering Conference UPEC, 228–235 (2007).
  • [8] M. Hasni, O. Touhami, R. Ibtiouen, M. Fadel, and S. Caux, “Estimation of synchronous machine parameters by standstill tests”, Mathematics and Computers in Simulation 81, 277–289 (2010).
  • [9] M. Huang, W. Li, and W. Yana, “Estimating parameters of synchronous generators using square-root unscented Kalman filter”, Electric Power Systems Research 80, 1137–1144 (2010).
  • [10] S. Berhausen and S. Paszek, “Use of the finite element method for parameter estimation of the circuit model of a high power synchronous generator”, Bull. Pol. Ac.: Tech. 63 (3), 575–582 (2015).
  • [11] Ł. Majka and S. Paszek, “Mathematical model parameter estimation of a generating unit operating in the Polish National Power System”, Bull. Pol. Ac.: Tech. 64 (2), 409–416 (2016).
  • [12] P. Pruski and S. Paszek, The modal analysis of selected disturbance waveforms in a power system. Determination of angular stability factors, Monograph 592, (2016), [in Polish].
  • [13] L. Rade and B. Westergren, Mathematics Handbook for Science and Engineering, Springer-Verlag, Berlin, 2004.
  • [14] J. Bonnans, J. Gilbert, C. Lemarechal, and C. Sagastizábal, Numerical Optimization. Theoretical and Practical Aspects, Springer-Verlag, Berlin, 2006.
  • [15] A. Kaw, E. Kalu, and D. Nguyen, Numerical Methods with Applications, University of South Florida, Tampa, 2011.
  • [16] A. Boboń, S. Paszek, P. Pruski, T. Kraszewski, and M. Bojarska, “Computer-aided determining of parameters of generating unit models based on measurement tests”, Przegląd Elektrotechniczny 5, 17–21 (2011).
  • [17] F.P. de Mello and L.H. Hannett, “Validation of Synchronous Machine Models and Derivation of Model Parameters from Tests”, IEEE Transaction on Power Apparatus and Systems 100 (2), 662–672 (1981).
  • [18] S. Paszek, A. Boboń, J. Kudła, J. Bialek, and N. Abi-Samra, “Parameter estimation of the mathematical model of a generator, excitation system and turbine”, Przegląd Elektrotechniczny 11, 7–12 (2005).
  • [19] S. Paszek and A. Nocoń, Optimisation and Polyoptimisation of Power System Stabilizer Parameters, LAMBERT Academic Publishing, Saarbrücken, 2014.
  • [20] P.C. Krause, Analysis of Electric Machinery, McGraw-Hill Book Company, New York, 1986.
  • [21] P. Kundur, Power System Stability and Control, McGraw-Hill, Inc., New York, 1994.
  • [22] P.M. Anderson and A.A. Fouad, Power System Control and Stability, John Wiley & Sons, New York, 2003.
  • [23] O. Chee-Mun, Dynamic Simulation of Electric Machinery using Matlab/Simulink, Prentice Hall – PTR, New Jersey, 1998.
  • [24] E.C. Bortoni and J.A. Jardini, “Identification of Synchronous Machine Parameters using Load Rejection Test Data”, IEEE Transaction on Energy Conversion 17 (2), 242–247 (2002).
  • [25] J.W. Feltes, S. Orero, B. Fardanesh, E. Uzunovic, S. Zelingher, and N. Abi-Samra, “Deriving Model Parameters from Field Test Measurements”, IEEE Computer Applications in Power 15 (4), 30–36 (2002).
  • [26] A. Boboń, M. Bojarska, T. Kraszewski, Ł. Majka, M. Pasko, S. Paszek, and P. Pruski, “Computations of generating unit model parameters using program PARZW with database”, 10th International Conference CONTROL OF POWER SYSTEMS, 169–170 (2012).
  • [27] A.V. Oppenheim and R.W. Schafer, Digital Signal Processing, Prentice Hall, Englewood Cliffs, 1974.
  • [28] M. Dehghani, M. Karrari, W. Rosehart, and O.P. Malik, “Synchronous machine model parameters estimation by a time-domain identification method”, Electrical Power and Energy Systems 32, 524–529 (2010).
  • [29] E. Mouni, S. Tnani, and G. Champenois, “Synchronous generator modelling and parameters estimation using least squares method”, Simulation Modelling Practice and Theory 16, 678–689 (2008).
  • [30] S. Paszek and Ł. Majka, “Computations of the model parameters of generating unit elements based on measurements”, AT&P Journal PLUS2 2008, 49–53 (2008).
  • [31] A. Nocoń, A. Boboń, S. Paszek, M. Pasko, P. Pruski, Ł. Majka, D. Szuster, and M. Bojarska, “Measurement parameter estimation of the model of a synchronous generator working in thermal electric power plant”, 10th International Conference on Advanced Methods in the Theory of Electrical Engineering, AMTEE, VI-3‒4 (2011).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cac12fe7-a8d6-4ac7-af5b-827e0f9bfce5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.