PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dawsonite as an indicator of multistage deformation and fluid pathways within fault zones: Insights from the Fore-Dukla Thrust Sheet, Outer Carpathians, Poland

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The structural pattern developed within metre to microscopic scale thrust and strike-slip fault zones exposed in the Palaeogene flysch rocks of the Fore-Dukla Thrust Sheet in the south-eastern part of the Silesian Nappe, Outer Carpathians, Poland, reveals evidence for upper crustal deformation and fluid flow. Syntectonic dawsonite [NaAlCO3(OH)2] indicates the following series of deformational events within the fault zones: i) detachment and buckle folding resulting from movement along thrust faults; ii) faulting as a compensation of the shortening, resulting in the fault propagation folding, breakthrough thrust faulting and imbrications; and iii) strike-slip faulting. The microstructural pattern coupled with the growth of a related sequence of carbonate minerals within the fault zones, followed by present-day dawsonite precipitation and tufa formation, indicate a continuing influence of fluids within the Silesian Nappe up to and including modern time. Structural observations at metre to microscopic scales coupled with EDS mapping of rocks indicate that dawsonite is a unique tool for the reconstruction of subsequent deformation in the Fore-Dukla Thrust Sheet.
Rocznik
Strony
51--78
Opis fizyczny
Bibliogr. 130 poz., rys.
Twórcy
  • Faculty of Geology, University of Warsaw, Żwirki i Wigury 93, 02-089 Warsaw, Poland
  • Institute of Ceramics and Building Materials, Postępu 9, 02-676 Warsaw, Poland
  • Faculty of Geology, University of Warsaw, Żwirki i Wigury 93, 02-089 Warsaw, Poland
Bibliografia
  • 1. Andreucci, B., Castelluccio, A., Jankowski, L., Mazzoli, S., Szaniawski, R. and Zattin, M. 2013. Burial and exhumation history of the Polish Outer Carpathians: Discriminating the role of thrusting and post-thrusting extension. Tectonophysics, 608, 866-883.
  • 2. Arndt, M., Virgo, S., Cox, S.F. and Urai, J.L. 2014. Changes in fluid pathways in calcite vein mesh (Natih Formation, Oman Mountains): insights from stable isotopes. Geofluids, 14, 391-418.
  • 3. Baker, J.C., Bai, G.P., Hamilton, P.J., Golding, S.D. and Kenee, J.B. 1995. Continental-scale magmatic carbon dioxide seepage recorded by Dawsonite in the Bowen-Gunnedah-Sydney basin system, Eastern Australia. Journal of Sedimentary Research, A65, 522-530.
  • 4. Bénézeth, P., Palmer, D.A., Anovitz, M.L. and Horita, J. 2007. Dawsonite synthesis and reevaluation of its thermodynamic properties from solubility measurements: Implications for mineral trapping of CO2. Geochimica et Cosmochimica Acta, 71, 4438-4455.
  • 5. Bojanowski, M.J. 2007. The onset of orogenic activity recorded in the Krosno shales from Grybów unit (Polish Outer Carpathians). Acta Geologica Polonica, 57, 509-522.
  • 6. Bojanowski, M.J. 2014. Authigenic dolomites in the Eocene - Oligocene organic carbon-rich shales from the Polish Outer Carpathians: evidence of past gas production and possible gas hydrate formation in the Silesian basin. Marine and Petroleum Geology, 51, 117-135.
  • 7. Boyer, S.E. and Elliot, D. 1982. Thrust Systems. American Association Petroleum Geologists Bulletin, 66, 1196-1230.
  • 8. Burchfiel, B.C. and Royden, L. 1982. Carpathian foreland fold and thrust belt and its relation to Pannonian and other basins. The American Association of Petroleum Geologists Bulletin, 66, 241-256.
  • 9. Burkhard, M. 1993. Calcite twins, their geometry, appearance and significance as stress-strain markers and indicators of tectonic regime: a review. Journal of Structural Geology, 15, 351-368.
  • 10. Caine, J.S., Evans, J.P. and Forster, C.B. 1996. Fault zone architecture and permeability structure. Geology, 24, 1025-1028.
  • 11. Chester, F.M., Evans, J.P. and Biegel, R.L. 1993. Internal structure and weakening mechanism of the S.Andreas Fault. Journal of Geophysical Research, 98, 771-786.
  • 12. Chester, J.S. 1996. Geometry and kinematics of a passive-roof duplex in the interior of the Idaho-Wyoming-northern Utah thrust belt. Bulletin of Canadian Petroleum Geology, 44, 363-374.
  • 13. Chester, J.S. 2003. Mechanical stratigraphy and fault-fold interaction, Absaroka thrust sheet, Salt River Range, Wyoming. Journal of Structural Geology, 25, 1171-1192.
  • 14. Csontos, L., Nagymarosy, L., Horvath, F. and Kováč, M. 1992. Tertiary evolution of the Intra-Carpathian area: a model. Tectonophysics, 208, 221-241.
  • 15. Dahlstorm, C.D.A. 1969. The upper detachment in concentric folding. Canadian Petroleum Geologists Bulletin, 17, 326-346.
  • 16. Dahlstorm, C.D.A. 1990. Geometric constraints derived from the law of conservation of volume and applied to evolutionary models for detachment folding. American Association of Petroleum Geologists Bulletin, 74, 336-344.
  • 17. Dixon, J.M., and Liu, S. 1992. Centrifuge modelling of the propagation of thrust faults. In: McClay, K.R. (Ed.), Thrust Tectonics, pp. 53-70. Chapman & Hall; London.
  • 18. Donath, F.A. 1964. Strength variation and deformational behaviour of anisotropic rocks. In: Judd, W.R. (Ed.), State of stress in the Earth’s crust, pp. 281-298. New York; Elsevier.
  • 19. Eichhubl, P. and Boles, J.R. 2000. Focused fluid flow along faults in the Monterey Formation, coastal California. Geological Society of America Bulletin, 112, 1667-1679.
  • 20. Erickson, S.G. 1996. Influence of mechanical stratigraphy on folding vs. faulting. Journal of Structural Geology, 18, 443-450.
  • 21. Estublier, A., Fornel, A., Brosse, É., Houel, P., Lecomte, J.C., Delmas, J. and Vincké, O. 2017. Simulation of a Potential CO2 Storage in the West Paris Basin: Site Characterization and Assessment of the Long-Term Hydrodynamical and Geochemical Impacts Induced by the CO2 Injection. Oil & Gas Science and Technology - Revue IFP Energies nouvelles, 72, 1-24.
  • 22. Faulkner, D.R., Jackson, C.A.L., Lunn, R.J., Schlische, R.W., Shipton, Z.K., Wibberley, C.A.J. and Withjack, M.O. 2010. A review of recent developments concerning the structure mechanics and fluid flow properties of fault zones. Journal of Structural Geology, 32, 1557-1575.
  • 23. Ferrill, D.A. and Morris, P. 2008. Fault zone deformation controlled by carbonate mechanical stratigraphy, Balcones fault system, Texas. American Association of Petroleum Geologists Bulletin, 92, 359-380.
  • 24. Ferrini, V., Martarelli, L., De Vito, C., Cina, A. and Deda, T. 2003. The Koman dawsonite and realgar-orpiment deposit, northern Albania; inferences on processes of formation. Canadian Mineralogist, 41, 413-427.
  • 25. Fischer M.P. and Jackson, P.B. 1999. Stratigraphic controls on deformation patterns in fault-related folds: a detachment fold example from the Sierra Madre Oriental foreland, northeast Mexico. Journal of Structural Geology, 21, 613-633.
  • 26. Fodor, L., Csontos, L., Bada G., Gyorfi, I. and Benkovics, L. 1999. Tertiary tectonic evolution of the Pannonian Basin system and neighbouring orogens: a new synthesis of paleostress data. In: Durand, B., Jolivet L., Horvath, F., Seranne M. (Eds), The Mediterranean Basins: Tertiary extension within the Alpine Orogen. Geological Society, London, Special Publications, 156, 295-334.
  • 27. Gągała, Ł., Vergés, J., Saura, E., Malata, T., Ringenbach, J.-C., Werner, P. and Krzywiec, P. 2012. Architecture and orogenic evolution of the northeastern Outer Carpathians from cross-section balancing and forward modeling. Tectonophysics, 532, 223-241.
  • 28. Golab, A.N., Carr, P.F. and Palamara, D.R. 2006. Influence of localised igneous activity on cleat dawsonite formation in Late Permian coal measures, Upper Hunter Valley, Australia. International Journal of Coal Geology, 66, 296-304.
  • 29. Gratier, J.-P. and Gueydan, F. 2007. Deformation in the Presence of Fluids and Mineral Reactions. Effect of Fracturing and Fluid-Rock Interaction on Seismic Cycles. In: Handy, M., Hirth, G., Rice, J., Hovius, N. and Friedrich, A. (Eds), The Dynamics of Fault Zones (95th Dahlem Conference), pp. 319-356. MIT Press; Cambridge, MA.
  • 30. Gucik, S. and Wójcik, A. 1982. Explanation to the Geological Map of Poland, Przemyśl-Kalników sheet, scale 1:200000. Wydawnictwa Geologiczne; Warszawa.
  • 31. Guterch, A., Grad, M., Keller, G.R., Posgay, K., Vosar, J., Spicak, A., Brueckel, E., Haynal, Z., Thybo, H. and Selvi, O. 2000. The Celebration 2000 Seismic Experiment. Joint Meeting of EURO-PROBE (TESZ) and PACE Projects. Zakopane/ Holy Cross Mountains, Poland. Abstracts volume, pp. 29- 32. Warszawa.
  • 32. Haczewski, G., Bąk, K., Kukulak, J., Mastella, L. and Rubinkiewicz, J. 2000. Explanation to the Geological Map of Poland, Ustrzyki Górne sheet, scale 1:50000. Polish Geological Institute Archive; Warszawa.
  • 33. Hayes, M. and Hanks, C.L. 2008. Evolving mechanical stratigraphy during detachment folding. Journal of Structural Geology, 30, 548-564.
  • 34. Hellawang, H., Declercq, J. and Aagaard P. 2011. Why is Dawsonite Absent in CO2 Charged Reservoirs? Oil and Gas Science Technology - Revue IFP Energies nouvelles, 66, 119-135.
  • 35. Hilgers, C. and Urai, J. 2002. Microstructural observations on natural syntectonic fibrous veins: implications for the growth process. Tectonophysics, 352, 257-274.
  • 36. Hurai, V., Huraiová, M., Slobodnik, M. and Rainer, T. 2015. Geofluids: Developments in Microthermometry, Spectroscopy, Thermodynamics, and Stable Isotopes, 162 p. Elsevier; Amsterdam.
  • 37. Hurai, V., Marko F., Tokarski, A.K., Świerczewska A., Kotulová, J. and Biroň, A., 2006. Fluids inclusion evidence for deep burial of the Tertiary accretionary wedge of the Carpathians. Terra Nova, 18, 440-446.
  • 38. Hutcheon, I., Shevalier, M., Durocher, K., Bloch, J., Johnson, G., Nightingale, M., and Mayer, B. 2016. Interactions of CO2 with formation waters, oil and minerals and CO2 storage at the Weyburn IEA EOR site, Saskatchewan, Canada. International Journal of Greenhouse Gas Control, 53, 354-370.
  • 39. Jamison, W.R. 1987. Geometric analysis of fold development in overthrust terranes. Journal of Structural Geology, 9, 207-219.
  • 40. Jankowski, L., Kopciowski, R., Ryłko, W., Danysh, V., Tsarnenko, P., Janoćko, J. and Jacko, S. 2004. Geological Map of the Outher Carpathians: Borderlands of Ukraine, Poland and Slovakia, 1:200 000. Państwowy Instytu Geologiczny; Warszawa.
  • 41. Jarmołowicz-Szulc, K. 2009. Recent contribution to mineralogical and geochemical studies in the Carpathians. Mineralogical Review, 59, 42-55.
  • 42. Jarmołowicz-Szulc, K. and Dudok, I. 2005. Migration of palaeofluids in the contact zone between the Dukla and Silesian units, Western Carpathians - evidence from fluid inclusions and stable isotopes in quartz and calcite. Geological Quarterly, 49, 291-304.
  • 43. Jarmołowicz-Szulc, K., Karwowski, Ł. and Marynowski, L. 2012. Fluid circulation and formation of minerals and bitumens in the sedimentary rocks of the Outer Carpathians - Based on studies on the quartz-calcite-organic matter association. Marine and Petroleum Geology, 32, 138-158.
  • 44. Johnson, J.W., Nitao, J.J., Steefal, C.I. and Knauss, K.G. 2004. Reactive transport modelling of CO2 storage in saline aquifers to elucide fundamental processes, trapping mechanism and sequestration partitioning. In: Baines, S.J. and Worden, R.H. (Eds), Geological Storage of Carbon Dioxide. Geological Society, London, Special Publications, 233, 107-128.
  • 45. Jucha, S. and Kotlarczyk, J. 1961. Seria menilitowo-krośnieńska w Karpatach fliszowych. Prace Geologiczne PAN, 4, 1-115.
  • 46. Kamilli, R.J. and Ohmoto, H. 1977. Paragenesis, Zoning, Fluid Inclusion, and Isotopic Studies of the Finlandia Vein, Colqui District, Central Peru. Economic Geology, 72, 950-982.
  • 47. Kharaka, Y., Cole, D.R., Hovorka, S.D., Gunter, W.D., Knauss, K.G. and Freifeld, B.M. 2006. Gas-water-rock interactions in Frio formation following CO2 injection: implications for the storage of greenhouse gases in sedimentary basins. Geo logy, 34, 577-580.
  • 48. Kiràly, C., Szamosfalvi, Á., Zilali-Sebess, L., Kónya, P., Kovács, I.J., Sendula, E., Szabó, C. and Falus, G. 2016. Caprock analysis from the Mihályi-Répcelak natural CO2 occurrence, Western Hungary. Environmental Earth Sciences, 75, [635] doi.org/10.1007/s12665-016-5399-6.
  • 49. Knauss, G.K., Johnson, J.W. and Steefel, C.I 2005. Evaluation of the impact of CO2, co-contaminant gas, aqueous fluid and reservoir rock interactions on the geologic sequestration of CO2. Chemical Geology, 217, 339-350.
  • 50. Knipe, J.P. 1993. The influence of fault zone processes and diagenesis on fluid flow. In: Horbury, A.D. and Robinson, A. (Eds), Diagenesis and Basin Development. American Association of Petroleum Geologists Studies in Geology, 36, 135-151.
  • 51. Konon, A. 2000. Deformation mechanism of cataclastic rocks from fault zones in the Beskid Wyspowy Mountains (Poland). Acta Geologica Polonica, 50, 387-392.
  • 52. Konon, A. 2001. Tectonics of the Beskid Wyspowy Mountains (Outer Carpathians, Poland). Geological Quarterly, 45, 179-204.
  • 53. Köster, J., Kotarba, M., Lafargue, E. and Kosakowski, P. 1998. Biomarker geochemistry of a for eland basin: the Oligocene Menilite Formation in the Flysch Carpathians of Southern Poland. Organic Geochemistry, 29, 649-669.
  • 54. Kotarba, M.J. and Koltun, Y.V. 2006. The origin and habitat of hydrocarbons of the Polish and Ukrainian parts of the Carpathian province. In: Golonka, J. and Picha, F.J. (Eds), The Carpathians and their Foreland: Geology and Hydrocarbon Resources. American Society of Petroleum Geologists Memoir, 84, 351-368.
  • 55. Kováč, M., Nagymarosy, A., Oszczypko, N., Ślączka, A., Csontos, L., Marunteanu, M., Matenco, L. and Márton, E. 1998. Palinspastic reconstruction of the Carpathian-Pannonian region during the Miocene. In: Rakús, M. (Ed.), Geodynamic Development of the Western Carpathians, pp. 189- 217. GSSR; Bratislava.
  • 56. Książkiewicz, M., 1972. Budowa Geologiczna Polski, tom IV. Tektonika, część 3, Karpaty, 228 p. Wydawnictwa Geologiczne; Warszawa.
  • 57. Kuśmierek, J. 1979. Deformacje grawitacyjne, nasunięcia wsteczne a budowa wgłębna I perspektywy naftowe przedpola jednostki dukielskiej w Bieszczadach. Prace Geologiczne PAN, 114, 1-68.
  • 58. Latta, D.K. and Anastasio, D.J. 2007. Multiple scale of mechanical stratification and décollement fold kinematics, Sierra Madre Oriental foreland, northeast Mexico. Journal of Structural Geology, 29, 1241-1255.
  • 59. Laubach S.E, Olson J.E. and Gross M.R. 2009. Mechanical and fracture stratigraphy. American Association of Petroleum Geologists Bulletin, 93, 1423-1426.
  • 60. Li, F. and Li, W. 2017. Petrological record of CO2 influx in the Dongying Sag, Bohai Bay Basin, NE China. Applied Geochemistry, 84, 373-386.
  • 61. Liu, N., Liu, L., Qu, X., Yang, H., Wang, L. and Zhao S. 2011. Genesis of authigene carbonate minerals in the Upper Cretaceous reservoir, Honggang Anticline, Songliao Basin: A natural analog for mineral trapping of natural CO2 storage. Sedimentary Geology, 237, 166-178.
  • 62. Mastella, L. 1988. Structure and evolution of Mszana Dolna tectonic window, Outer Carpathians, Poland. Annales So cietatis Geologorum Poloniae, 58, 53-173. [In Polish with English summary].
  • 63. Mastella, L. and Rybak-Ostrowska, B. 2012. Tectonic control of tufa occurrences in the Podhale Synclinorium (Central Western Carpathians, southern Poland). Geological Quarterly, 56, 733-744.
  • 64. Mastella, L. and Szynkaruk, E. 1998. Analysis of the fault pattern in selected areas of the Polish Outher Carpathians. Geological Quarterly, 43, 263-276.
  • 65. Mastella, M. 1995. Tectonic map of the Fore-Dukla Zone (between Roztoki Dolne and Ustrzyki Górne). Laboratory of Tectonics and Geological Mapping Archive, University of Warsaw; Warsaw.
  • 66. McLaughlin, R.J., Sorg, D.H., Morton J.L., Theodore T.G., Meyer C.E. and Delevaux, M.H. 1985. Paragenesis and Tectonic Significance of Base and Precious Metal Occurrence along the San Andreas Fault at Point Delgada, California. Economic Geology, 80, 344-359.
  • 67. Ming, X.R., Liu, L., Yu, L., Bai, H.G., Yu, Z.C., Liu, N., Yang, H.X., Wang, F.G. and Li, B.X. 2017. Thin-film dawsonite in Jurassic coal measure strata of the Yaojie coalfield, Minhe Basin, China: A natural analogue for mineral carbon storage in wet supercritical CO2. International Journal of Coal Geology, 180, 83-99.
  • 68. Mitra, S. 1986. Duplex Structures and Imbricate Thrust Systems: Geometry, Structural Position, and Hydrocarbon Potential. American Association of Petroleum Geologists Bulletin, 70, 1087-1112.
  • 69. Mitra, S. 2002. Fold-accommodation faults. American Association of Petroleum Geologists Bulletin, 85, 671-693.
  • 70. Mitra, S. 2003. A unified kinematic model for the evolution of detachment folds. Journal of Structural Geology, 25, 1659- 1673.
  • 71. Młynarczyk, M. 1996. Morfologia oraz geochemiczne i tektoniczne warunki powstawania dimanentów marmaroskich w jednostce przeddukielskiej w Bieszczadach. Master thesis, Archives of Laboratorium of Tectonics and Geological Mapping, University of Warsaw; Warsaw.
  • 72. Moore, J.C. and Vrolijk, P. 1992. Fluids in Accretionary Prisms. Reviews in Geophysics, 30, 113-135.
  • 73. Morley, C.K. 1994. Fold-generated imbricates: examples from the Caledonides in southern Norway. Journal of Structural Geology, 16, 619-631.
  • 74. Narębski, W. 1957. O diagenetycznych dolomitach żelazistych w Karpatach fliszowych. Annales Societatis Geologorum Poloniae, 26, 29-50.
  • 75. Nemčok, M., Krzywiec, P., Wojtaszek, M., Ludhová, L., Klecker, R.A., Sercombe, W.J. and Coward, M.P. 2006. Tertiary development of the Polish and eastern Slovak parts of the Carpathian accretionary wedge: insights from balanced cross sections. Geologica Carpathica, 57, 355- 370.
  • 76. Nemčok, M., Schamel, S. and Gayer R. 2009. Thrustbelts: Structural Architecture, Thermal Regimes, Petroleum Systems, 541 p. Cambridge University Press; Cambridge.
  • 77. Odling, N.E., Gillespie, P., Bourgine, B., Castaing, C., Chilés, J.-P., Christensen, N.P., Fillion, E., Genter, A., Olsen, C., Thrane, L., Trice, R., Aarsth, E., Walsh, J.J. and Watterson, J. 1999. Variation in fracture system geometry and their implications for fluid flow in fractured hydrocarbon reservoirs. Petroleum Geoscience, 5, 373-384.
  • 78. Okuyama, Y. 2014. Dawsonite-bearing carbonate veins in the Cretaceous Izumi Group, SW Japan: a possible natural analogue of fracture formation and self-sealing in CO2 geological storage. Energy Procedia, 63, 5530-5537.
  • 79. Opolski, Z. 1933. O stratygrafii o paleografii warstw krośnieńskich. Sprawozdania Państwowego Instytutu Geologicznego, 7, 565-636.
  • 80. Oszczypko, N. 1998. The Western Carpathian Foredeep - development of the foreland basin in front of the accretionary wedge and its burial history (Poland). Geologica Carpathica, 49, 415-431.
  • 81. Oszczypko, N. 2004. The structural position and tectonosedimentary evolution of the Polish Outer Carpathians. Przegląd Geologiczny, 52, 780-791.
  • 82. Oszczypko, N. 2006. Late Jurassic-Miocene evolution of the Outer Carpathians fold-and-thrust belt and its foredeep basin (Western Carpathians, Poland). Geological Quarterly, 50, 169-194.
  • 83. Oszczypko, N. and Tomaś, A. 1985. Tectonic evolution of maginal part of the Polish Flysch Carpathians in the Middle Miocene. Geological Quarterly, 1, 109-128.
  • 84. Palayangoda, S.S. and Nguyen, Q.P., 2015. Thermal behaviour of raw oil shale and its components. Oil Shale, 32, 160-171.
  • 85. Pescatore, T. and Ślączka, A. 1984. Evolution models of two flysch basins: the northern Carpathians and the Southern Apennines. Tectonophysics, 106, 49-70.
  • 86. Poprawa, P., Malata, T. and Oszczypko, N. 2002. Tectonic evolution of the Polish part of Outer Carpathian’s sedimentary basins - constraints from subsidence analysis. Przegląd Geologiczny, 50, 1092-1108. [In Polish with English summary]
  • 87. Preibisch, S., Saalfeld, S. and Tomancak, P. 2009. Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics, 25, 1463-1465.
  • 88. Rajchel, J. and Szczepańska, M. 1997. Dolomity żelaziste z warstw krośnieńskich jednostki skolskiej okolic Dynowa. Zeszyty Naukowe AGH Geologia, 23, 229-248.
  • 89. Ramsay, J.G. 1967. Folding and Fracturing of Rocks, 568 p. McGraw- Hill; New York.
  • 90. Ramsay, J.G. 1980. The crack-seal mechanism of rock deformation. Nature, 284, 135-139.
  • 91. Royden, L.H. 1998. Late Cenozoic tectonics of the Pannonian Basin System. In: Royden, L.H. and Horwath, F. (Eds), The Pannonian basin - A study in basin evolution. American Association of Petroleum Geologists Memoir, 45, 27-48.
  • 92. Rubinkiewicz, J. 1996. Tektonika strefy nasunięcia dukielskiego w zachodniej części Bieszczadów. Przegląd Geologiczny, 44, 1199-1204.
  • 93. Rubinkiewicz, J. 1998. Development of joints in Silesian nappe (Western Bieszczady, Carpathians, SE Poland). Przegląd Geologiczny, 46, 820-826. [In Polish with English summary]
  • 94. Rubinkiewicz, J. 2000. Development of fault pattern in the Silesian Nappe: Eastern Outer Carpathians, Poland. Geological Quarterly, 44, 391-403.
  • 95. Rubinkiewicz, J. 2007. Fold-thrust-belt geometry and detailed structural evolution of the Silesian nappe - eastern part of the Polish Outer Carpathians (Bieszczady Mts.). Acta Geologica Polonica, 57, 479-508.
  • 96. Rybak, B. 2005. Structural analysis of selected fragments of thrust fault zones of the Magura Unit and Fore-Dukla Zone in the Polish Outer Carpathians, 106 p. PhD thesis, Warsaw University; Warsaw. [In Polish]
  • 97. Rybak-Ostrowska, B., Konon, A., Domonik, D., Poszytek, A. and Uroda, J., 2017. Shallow generated damage within non-planar strike-slip fault zones - role of sedimentary rocks in slip accommodation, SW Holy Cross Mountains, Poland. International Journal of Earth Sciences, 106, 1863-1888.
  • 98. Schindelin, J., Arganda-Carreras, I. and Frise, E. 2012. Fiji: an open-source platform for biological-image analysis. Nature Methods, 9, 676-682.
  • 99. Scholz, C.H 1988. The brittle-plastic transition and the depth of seismic faulting. Geologische Rundschau, 77, 319-328.
  • 100. Scholz, C.H. 2002. The Mechanics of Earthquakes and Faulting, 467 p. Cambridge University Press; Cambridge.
  • 101. Shackleton, J.R., Cook, M.L. and Susman, A.J. 2005. Evidence for temporally changing mechanical stratigraphy and effects on joint-network architecture. Geology, 33, 101-104.
  • 102. Sibson, R.H. 1977. Fault rocks and fault mechanisms. Journal of Geological Society of London, 133, 191-213.
  • 103. Sibson, R.H. 1983. Continental fault structure and the shallow earthquake source. Journal of Geological Society of London, 140, 741-767.
  • 104. Sibson, R.H. 1996. Structural permeability of fluid driven fault-fracture meshes. Journal of Structural Geology, 18, 1031-1042.
  • 105. Sibson, R.H. 2003. Brittle-failure controls on maximum sustainable overpressure in different tectonic regimes. Ameri can Association of Petroleum Geologist Bulletin, 87, 901-908.
  • 106. Sirbescu, M.-L. and Nabelek, P.I. 2003. Crustal melts below 400ºC. Geology, 31, 685-688.
  • 107. Ślączka, A. 1957. Geological Map of Poland, Bukowsko sheet, scale 1:50000. Wydawnictwa Geologiczne; Warszawa.
  • 108. Ślączka, A. 1958. Notes on the geological position of mineral ores in the region of Baligród (Middle Carpathians). Geological Quarterly, 2, 637-643. [In Polish with English summary]
  • 109. Ślączka, A. 1959. Stratigraphy of the Silesian series of the Bystre slice (to the south of Baligród). Biuletyn Instytutu Geologicznego, 131, 202-260. [In Polish with English summary]
  • 110. Ślączka, A. 1968. Explanation to the Geological Map of Poland, Bukowsko sheet, scale 1:50000. Wydawnictwa Geologiczne; Warszawa.
  • 111. Ślączka, A. 1971. The geology of the Dukla Unit. Prace Instytutu Geologicznego, 63, 1-76. [In Polish with Russian and English summary]
  • 112. Ślączka, A. and Żytko and K., 1978. Geological Map of Poland, sheet Łupków, scale 1:200000. Wydawnictwa Geologiczne; Warszawa.
  • 113. Smith, J.W. and Milton, C. 1966. Dawsonite in the Green River formation of Colorado. Economic Geology, 61, 1029-1042.
  • 114. Stevenson, J. and Stevenson, L.S. 1965. The petrology of dawsonite at the type locality, Montreal. Canadian Mineralogist, 8, 249-252.
  • 115. Stoica, G. and Pérez-Ramírez, J. 2010. Stability and Inter-conversion of synthetic dawsonite in aqueous media. Geochimica et Cosmochimica Acta, 74, 7048-7058.
  • 116. Suppe, J. and Medwedeff, D.A. 1990. Geometry and kinematics of fault propagation folding. Eclogae Geologicae Helvetiae, 83, 409-454.
  • 117. Świdziński, H. 1958. Geological Map of Polish Carpathians, eastern part, scale 1:200000. Wydawnictwa Geologiczne; Warszawa.
  • 118. Świerczewska, A. 2005. The interplay of the thermal and structural histories of the Magura Nappe (Outer Carpathians) in Poland and Slovakia. Mineralogia Polonica, 36, 91-144
  • 119. Szczepańska, M. 2003. Konkrecje węglanowe jednostki skolskiej. Gospodarka Surowców Mineralnych, 19, 5-33.
  • 120. Tołwiński, K. 1933. Centralna Depresja Karpacka. Geologia i Statystyka Naftowa Polski, 7, 362-366.
  • 121. Trémosa, T.J., Castillo, C., Vong, C.Q., Kervévan, C., Lassin, A. and Audiganeremosa, P. 2014. Long-term Assessment of Geochemical Reactivity of CO2 Storage in Highly Saline Aquifers: Application to Ketzin, in Salah and Snøhvit storage sites. International Journal of Greenhouse Gas Control, 20, 2-26.
  • 122. Van Noten K., Van Baelen H. and Sintubin M. 2012. The complexity of 3D stress-state changes during compressional tectonic inversion at the onset of orogeny. Geological Society, London, Special Publications, 367, 51-69.
  • 123. Vergés, J., Goodarzi, M.G.H., Emami, H., Karpuz, R., Efstathiou, J. and Gillespie, P. 2011. Multiple Detachment Folding in Pusht-e Kuh Arc, Zagros: Role of Mechanical Stratigraphy. In: McClay, K., Shaw, J.H. and Suppe, J. (Eds), Thrust fault-related folding. American Association of Petroleum Geologists Memoir, 94, 69-94.
  • 124. Wigley, M., Kampman, N., Dubacq, B. and Bickle, M. 2012. Fluid-mineral reactions and trace metal mobilization in an exhumed natural CO2 reservoir, Green River, Utah. Geology, 40, 555-558.
  • 125. Woodcock, N.H. and Mort, K. 2008. Classification of fault breccias and related fault rocks. Geological Magazine, 145, 435-440.
  • 126. Worden, R.H. 2006. Dawsonite cement in the Triassic Lam Formation Shabwa Basin, Yemen: a natural analogue for a potential mineral product of subsurface CO2 storage for greenhouse gas reduction. Marine and Petroleum Geology, 23, 61-77.
  • 127. Yu, M., Liu, L., Yang, S., Yu, Z., Li, S., Yang, Y. and Shi X. 2016. Experimental identification of CO2-oil-brine-rock interactions: Implications for CO2 sequestration after termination of a CO2-EOR project. Applied Geochemistry, 75, 137-151.
  • 128. Zalba, P.E., Conconi, M.S., Morosi M., Manassero, M. and Comerio, M. 2011. Dawsonite in tuffs and litharenites of the Cerro Castaño Member, Cerro Barcino Formation, Chubut Group (Cenomanian), Los Altares, Patagonia, Argentina. Canadian Mineralogist, 49, 503-520.
  • 129. Zerai, B., Saylor, B.Z. and Matisoff, G. 2006. Computer simulation of CO2 trapped through mineral precipitation in the Rose Run Sandstone, Ohio. Applied Geochemistry, 21, 223-224.
  • 130. Żytko, K., Zając, R., Gucik, S., Ryłko, W., Oszczypko, N., Garlicka, I., Nemčok, J., Eliaś, M., Menčik, E. and Stranik, Z. 1989. Map of the tectonic elements of the Western Outer Carpathians and their foreland, 1:500 000. In: Poprawa, D. and Nemčok, J. (Eds), Geological Atlas of the Western Outer Carpathians and their Foreland. Państwowy Instytut Geologiczny; Warszawa.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cabd03fe-e541-4447-bba7-86e0be0feb13
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.