PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Review: Compact size and isolation of MIMO antenna

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Przegląd stanu wiedzy na temat Kompaktowego rozmiaru i izolacji anteny MIMO
Języki publikacji
EN
Abstrakty
EN
The rapid growth of wireless system required additional frequency spectrum in order to tolerate the growing telecom networks. To address such requirement, MIMO technique that target on antenna arrays and diversity is an adequate solution that would be leading to achieve the high additivity and reliability. the main objective is to design a suitable MIMO antenna with optimum specification and best results such as size miniature, wide bandwidth, high efficiency, high isolation, lower envelope correlation coefficient and reduced input reflection coefficient. All research in this paper mentioned in the literature survey is aimed to display MIMO antennas that best results of the size, envelope correlation coefficient and isolation.
PL
Szybki rozwój systemu bezprzewodowego wymagał dodatkowego pasma częstotliwości, aby tolerować rosnące sieci telekomunikacyjne. Aby sprostać tym wymaganiom, technika MIMO ukierunkowana na macierze antenowe i różnorodność jest odpowiednim rozwiązaniem, które prowadziłoby do osiągnięcia wysokiej addytywności i niezawodności. głównym celem jest zaprojektowanie odpowiedniej anteny MIMO o optymalnej specyfikacji i najlepszych wynikach, takich jak miniaturowy rozmiar, szerokie pasmo, wysoka wydajność, wysoka izolacja, niższy współczynnik korelacji obwiedni i zmniejszony współczynnik odbicia wejściowego. Wszystkie badania w tym artykule, wymienione w przeglądzie literaturowym, mają na celu pokazanie anten MIMO, które mają najlepsze wyniki pod względem rozmiaru, współczynnika korelacji obwiedni i izolacji.
Rocznik
Strony
11--17
Opis fizyczny
Bibliogr. 81 poz., rys., tab.
Bibliografia
  • [1] A.J.A.Al-Gburi, I.M.Ibrahim, Z. Zakaria,M.Y. Zeain, H. Alwareth, A.M. Ibrahim and H.H.Keriee, “High Gain of UWB CPW-fed mercedes-shaped printed monopole antennas for UWB applications. Prz. Elektrotech, 5, pp.70-73, 2021.
  • [2] A.M. Ibrahim, I.M. Ibrahim, and N. A. Shairi, “Review isolation techniques of the MIMO antennas for Sub-6,” Prz. Elektrotechniczny, vol. 97, no. 1, pp. 3–9, 2021.
  • [3] X. Chen, S. Zhang, and Q. Li, “A Review of Mutual Coupling in MIMO Systems,” IEEE Access, vol. XX, no. c, 2018.
  • [4] R. Garg, P. Bharia, I. Bahi, and A. Ittpiboon, “MICROSTRIP ANT DESIG HANDBOOK.” Artech House, London, 2001.
  • [5] I. Nadeem and D.Y. Choi, “Study on Mutual Coupling Reduction Technique for MIMO Antennas,” IEEE Access, vol. 7, no. c, pp. 563–586, 2018.
  • [6] B.H. Ahmad, T.R. Al-Shaikhli, N.Hassan, A.M.Ibrahim, P.E.Lim and N.S. Nordin, “ A review on echo and phase inverted scanning in acoustic microscopy for failure analysis,” PrzeglądElektrotechniczny, 1(3), pp.11-16, 2021, , doi: 10.15199/48.2021.03.02.
  • [7] A.M. Ibrahim, I.M. Ibrahim, and N. A. Shairi, “Compact MIMO Slot Antenna of Dual-Bands for LTE and 5G Applications,”Int. J. Adv. Sci. Technol, 28(13), pp.239-246,2019.
  • [8] C.R. Jetti and V. R. Nandanavanam, “Trident-shape strip loaded dual band-notched UWB MIMO antenna for portable device applications,” AEUE - Int. J. Electron. Commun., 2017.
  • [9] S. Wang, S. Member, and Z. Du, “Decoupled Dual-Antenna System Using Crossed Neutralization Lines for LTE / WWAN Smartphone Applications,” IEEE Antennas Wirel. Propag. Lett., vol. 14, pp. 523–526, 2015.
  • [10] S. Zhang and G.F. Pedersen, “Mutual Coupling Reduction for UWB MIMO Antennas with a Wideband Neutralization Line,” IEEE Antennas Wirel. Propag. Lett., v. 1225, no. c, 5–8, 2015.
  • [11] W.H. Shin, S. Kibria, and M.T. Islam, “HEXA BAND MIMO ANTENNA WITH NEUTRALIZATION LINE FOR LTE,” Microw. Opt. Technol. Lett., vol. 58, no. 5, pp. 1198–1204, 2016.
  • [12] Y. Yu, X. Liu, Z. Gu, and L. Yi, “A Compact Printed Monopole Array with Neutralization Line for UWB Applications,” IEEE Int.Symp. Antennas Propag., pp. 1779–1780, 2016.
  • [13] A. Toktas, “Log-periodic dipole array-based MIMO antenna for the mobile handsets,” J. Electromagn. Waves Appl., vol. 5071, no. January, 2016.
  • [14] Y.F. Cheng, X. Ding, W. Shao, and B.Z. Wang, “Reduction of Mutual Coupling Between Patch Antennas Using a Polarization-Conversion Isolator,” IEEE Antennas Wirel. Propag. Lett., vol. 16, pp. 1257–1260, 2017.
  • [15] A. Kayabasi, A. Toktas, E. Yigit, and K. Sabanci, “Triangular quad-port multi-polarized UWB MIMO antenna with enhanced isolation using neutralization ring,” AEU - Int. J. Electron. Commun., vol. 85, pp. 47–53, 2018.
  • [16] Y. Li, C.Y.D. Sim, Y. Luo, and G. Yang, “Metal-frame-integrated eight-element multiple-input multiple-output antennaarray in the long term evolution bands 41/42/43 for fifth generation smartphones,” Int. J. RF Microw. Comput. Eng., vol. 29, no. 1, pp. 1–12, 2019.
  • [17] J.H. Chou, J.F. Chang, D.B. Lin, and T. L. Wu, “Dual-band WLAN MIMO antenna with a decoupling element for full-metallic bottom cover tablet computer applications,” Microw. Opt. Technol. Lett., vol. 60, no. 5, pp. 1245–1251, 2018.
  • [18] H. Zou, Y. Li, B. Xu, Y. Luo, M. Wang, and G. Yang, “A dual-band eight-antenna multi-input multi-output array for 5G metal-framed smartphones,” RF Microw. Comput. -AIDED Eng., no. March, pp. 1–15, 2019.
  • [19] E. Fritz-Andrade, H. Jardon-Aguilar, and J. A. Tirado-Mendez, “Mutual coupling reduction of two 2×1 triangular-patch antenna array using a single neutralization line for MIMO applications,” Radioengineering, vol. 27, no. 4, pp. 976–982, 2018.
  • [20] R. Gurjar, D.K. Upadhyay, B.K. Kanaujia, and A. Kumar, “A compact modified sierpinski carpet fractal UWB MIMO antenna with square-shaped funnel-like ground stub,” AEU - Int. J. Electron. Commun., vol. 117, p. 153126, 2020.
  • [21] D. Kumar Raheja, S. Kumar, B. Kumar Kanaujia, S. Kumar Palaniswamy, R. Rao Thipparaju, and M. Kanagasabai, “Truncated elliptical Self-Complementary antenna with Quad-Band notches for SWB MIMO systems,” AEU - Int. J. Electron. Commun., vol. 131, no. January, 2021.
  • [22] L. Liu, S. W. Cheung, and T. I. Yuk, “Compact MIMO Antennafor Portable UWB Applications with Band-Notched Characteristic,” IEEE Trans. Antennas Propag., vol. 2, no. c, 2015.
  • [23] M.S. Khan, A. Capobianco, A. Iftikhar, R.M. Shubair, E. Anagnostou, and B.D. Braaten, “Ultra-compact dual-polarised UWB MIMO antenna with meandered feeding lines,” IET Microwaves, Antennas Propag., pp. 997–1002, 2017.
  • [24] M. . Khan, M.F. Shafique, A. Naqvi, A.D. Capobianco, B.Ijaz, and B.D. Braaten, “A miniaturized dual-band MIMO antenna for WLAN applications,” IEEE Antennas Wirel. Propag. Lett., vol. 14, pp. 958–961, 2015.
  • [25] Y. Ou, X. Cai, and K. Qian, “Two-Element Compact Antennas Decoupled with a Simple Neutralization Line,” Electromagn. Res. Lett., vol. 65, no. November 2016, pp. 63–68, 2017.
  • [26] A. Gorai, A. Dasgupta, and R. Ghatak, “A compact quasi-self-complementary dual band notched UWB MIMO antenna with enhanced isolation using Hilbert fractal slot,” AEU - Int. J. Electron. Commun., vol. 94, no. December 2017, pp. 36–41, 2018.
  • [27] J. Banerjee, A. Gorai, and R. Ghatak, “Design and analysis of a compact UWB MIMO antenna incorporating fractal inspired isolation improvement and band rejection structures,” AEU - Int. J. Electron. Commun., vol. 122, p. 153274, 2020.
  • [28] B. Yang, J. Dong, H. Luo, L. Wu, Q. Zeng, and X. Cao, “Compact UWB MIMO antenna with quasi-self-complementary half-slot structure,” 2020 IEEE MTT-S Int. Conf. Numer. Electromagn. Multiphysics Model. Optim. NEMO 2020, pp. 1–4, 2020.
  • [29] G. Han, L. Pei, L. Li, Z. Fang, and L. Han, “Study on Improving the Isolation of MIMO Antenna,” 2020 Int. Conf. Microw. Millim.Wave Technol. ICMMT 2020 - Proc., pp. 2020–2022, 2020.
  • [30] M.Y. Jamal, M. Li, and L. Jiang, “A Novel Planar Dual CP MIMO Antenna with Polarization Diversity and High Isolation,” 2020 IEEE Int. Symp. Antennas Propag. North Am. Radio Sci. Meet. IEEECONF 2020 - Proc., pp. 1927–1928, 2020.
  • [31] M. Nirmala, M. Bharathi, and N. Deepika Rani, “Isolation Improvement of Multiband Fractal MIMO Antenna for Wireless Applications,” Proc. - 2020 IEEE India Counc. Int. Subsections Conf. INDISCON 2020, pp. 8–11, 2020.
  • [32] Q. Li and Y. Sun, “A High Isolation UWB MIMO Antenna basedon Angle Diversity,” 2020 IEEE MTT-S Int. Wirel. Symp. IWS 2020 - Proc., pp. 10–12, 2020.
  • [33] A. Ahmad and F.A. Tahir, “Multiband Reconfigurable MIMO Antenna for GSM/GPS/GLONASS/LTE/WWAN Wireless Terminals,” 2020 Int. Conf. UK-China Emerg. Technol. UCET 2020, pp. 5–6, 2020.
  • [34] S.S. Jehangir, R. Hussain, and M.S. Sharawi, “A Novel Frequency Reconfigurable Yagi-Like MIMO Antenna System,” 14th Eur. Conf. Antennas Propagation, EuCAP 2020, vol. 1, pp. 8–10, 2020.
  • [35] H. Li and N. Gong, “An SRR and CSRR Based UWB-MIMO Antenna,” 2020 IEEE Int. Symp. Antennas Propag. North Am. Radio Sci. Meet. IEEECONF 2020 - Proc., vol. 2, pp. 679–680.
  • [36] M. Usman, K. Pedram, Y. Zhu, C. Yu, and A. Zhu, “Highly Isolated Compact Tri-Band MIMO Antenna with Trapezoidal Defected Ground Plane for 5G Communication Devices,” 2020 Int. Conf. UK-China Emerg. Technol. UCET 2020, pp. 5–8, 2020.
  • [37] M.U. Ullah, A. Aziz, R. Khalid, I. Malik, R. Ali, and S. Noor, “MIMO Textile Antenna for 5.2 GHz Medical Wearable Monitoring Systems,” Proc. - 2020 23rd IEEE Int. Multi-Topic Conf. INMIC 2020, no. 2, pp. 21–24, 2020.
  • [38] A.H. Jabire et al., “Design of a Compact UWB/MIMO Antennawith High Isolation and Gain,” Proc. 2020 IEEE Work. Microw. Theory Tech. Wirel. Commun. MTTW 2020, pp. 72–75, 2020.
  • [39] A.H. Abdelgwad and M. Ali, “Mutual Coupling Reduction of a Two-element MIMO Antenna System Using Defected Ground Structure,” 2020 IEEE Int. Symp. Antennas Propag. North Am. Radio Sci. Meet. IEEECONF 2020 - Proc., pp. 1909–1910.
  • [40] S.K. Badi and O. P. Acharya, “Isolation Enhancement in MIMO with Low Space Diversity for 5G/WLAN Applications,” Int. Conf. Adv. Commun. Technol. Signal Process. ACTS 2020, 2020.
  • [41] M. Sangwan, G. Panda, and P. Yadav, “A Design and Analysisof P Cut MIMO Patch Antenna for Reduce of Mutual Coupling in Wireless Range,” Proc. 5th Int. Conf. Inven. Comput. Technol. ICICT 2020, pp. 919–926, 2020.
  • [42] C.M. Krishna, M. Mamatha, and J.P. Kumar, “Mickey Mouse Modeled MIMO Antenna for Extended UWB Applications,” Proc. 4th Int. Conf. Comput. Methodol. Commun. ICCMC 2020, no. Iccmc, pp. 522–527, 2020.
  • [43] A. Mansoul and M. Nedil, “Compact and Reconfigurable Multiband 2-Element MIMO Slot Antenna for Advanced Communication Systems,” 2020 IEEE Int. Symp. Antennas Propag. North Am. Radio Sci. Meet. IEEECONF 2020 - Proc., pp. 575–576, 2020.
  • [44] V. Rajeshkumar and R. Rajkumar, “SRR Loaded Compact Tri-Band MIMO Antenna for WLAN / WiMAX Applications,” vol. 95, no. October 2020, pp. 43–53, 2021.
  • [45] A.S. Pradeep, G. A. Bidkar, and M. Jagadish, “Design and Research of Modified Split Ring Resonator for Reduction of Mutual Coupling in Microstrip Patch Antenna Array,” Int. J. Eng. Adv. Technol., vol. 8, no. 6, pp. 3688–3691, 2019.
  • [46] A.H. Jabire, H.-X. Zheng, A. Abdu, and Z. Song, “Characteristic Mode Analysis and Design of Wide Band MIMO Antenna Consisting of Metamaterial Unit Cell,” Electronics, vol. 8, no. 1, p. 68, 2019.
  • [47] J. Li, J. Shi, K. Feng, Z. Xiao, J. Chen, and A. Zhang, “Isolation enhanced circularly polarized patch antenna array using modified electric-field-coupled resonator,” Int. J. RF Microw. Comput. Eng., vol. 29, no. 5, pp. 1–7, 2019.
  • [48] R. Mark and S. Das, “Near Zero Parameter Metamaterial Inspired Superstrate for Isolation Improvement in MIMO Wireless Application,” Frequenz, vol. 0, no. 0, 2019.
  • [49] N.L. Nguyen and V.Y. Vu, “Gain enhancement for MIMO antenna using metamaterial structure,” Int. J. Microw. Wirel. Technol., pp. 2–13, 2019.
  • [50] L.S.I. Iming, H.A.J. Iang, X.L.V In, and J.U.N.D. Ing, “Broadband extremely close-spaced 5G MIMO antenna with mutual coupling reduction using metamaterial-inspired super-strate,” Opt. Express, vol. 27, no. 3, pp. 3472–3482, 2019.
  • [51] M. Rezapour, J. A. Rashed-Mohassel, A. Keshtkar, and M. N.Moghadasi, “Suppression of mutual coupling in rectangular dielectric resonator antenna arrays using Epsilon-Negative metamaterials (ENG),” J. Electromagn. Waves Appl., vol. 33, no. 9, pp. 1211–1223, 2019.
  • [52] S. Sahandabadi and S. V. A. D. Makki, “Mutual coupling reduction using complementary of SRR with wire MNG structure,” Microw. Opt. Technol. Lett., vol. 61, no. 5, pp. 1231–1234, 2019.
  • [53] X. Tan, W. Wang, Y. Wu, Y. Liu, and A. A. Kishk, “Enhancing Isolation in Dual-Band Meander-Line Multiple Antenna by Employing Split EBG Structure,” IEEE Trans. Antennas Propag., vol. 67, no. 4, pp. 2769–2774, 2019.
  • [54] R. Mark, N. Rajak, K. Mandal, and S. Das, “Metamaterial Based Superstrate towards the Isolation and Gain Enhancement of MIMO Antenna for WLAN application,” AEUE - Int. J. Electron. Commun., 2019.
  • [55] G.Y. Jin, C.Z. Du, K.J. Li, Z.L. Zhao, W.Q. Zheng, and F.H. Yang, “A Quad-Band MIMO Antenna for WLAN/WiMAX/7GHz X-Band Applications,” 2020 Int. Conf. Microw. Millim. Wave Technol. ICMMT 2020 - Proc., pp. 2020–2022, 2020.
  • [56] S. Chouhan, V. S. Kushwah, D. K. Panda, and S. Singhal, “Spider-shaped fractal MIMO antenna for WLAN/WiMAX/WiFi/Bluetooth/C-band applications,” AEU - Int. J. Electron. Commun., vol. 110, p. 152871, 2019.
  • [57] I. Mohamed, M. Abdalla, A. E.-A. Mitkees, and A. M. Ibrahim, “International Journal of Electronics and Communications ( AEÜ ) Perfect isolation performance among two-element MIMO antennas,” AEUE - Int. J. Electron. Commun., vol. 107, pp. 21–31, 2019.
  • [58] K.L. Wong, B.W. Lin, and S.E. Lin, “High-isolation conjoined loop multi-input multi-output antennas for the fifth-generationtablet device,” Microw. Opt. Technol. Lett., vol. 61, no. 1, pp. 111–119, 2019.
  • [59] S. Anand, P.K. Rao, and G. Bharti, “Dielectric resonator based composite MIMO antenna for WLAN/WiMAX Applications,” 2020 IEEE Students’ Conf. Eng. Syst. SCES 2020, pp. 7–12.
  • [60] K.K. Guan, G. Zhao, and M.S. Tong, “A Compact Monopole MIMO Antenna for WLAN Communications,” 2020 IEEE MTT-S Int. Conf. Numer. Electromagn. Multiphysics Model. Optim. NEMO 2020, pp. 10–12, 2020.
  • [61] M. Mishra, R.S. Kshetrimayum, and S. Chaudhuri, “Low Mutual Coupling Dual-port Dual-band MIMO Antenna Array for Mobile Terminal,” 2020 33rd Gen. Assem. Sci. Symp. Int. Union Radio Sci. URSI GASS 2020, no. September, pp. 5–8.
  • [62] P. Ghandade, S. Parkar, A. Chauhan, H. Mhatre, and A. Chaudhari, “Compact Octagonal Shaped Monopole UWB MIMO Antenna with Dual Band-Notch Characteristics,” 2020 3rd Int. Conf. Commun. Syst. Comput. IT Appl. CSCITA 2020 - Proc., no. 2, pp. 100–104, 2020.
  • [63] M.B.E.N. Yamna and H. Sakli, “UWB-MIMO Antenna with High Isolation Using Stub Dedicated to Connected Objects,” Proc. - STA 2020 2020 20th Int. Conf. Sci. Tech. Autom. Control Comput. Eng., vol. 297, pp. 297–300, 2020.
  • [64] J.F. Bian and Q.X. Chu, “A Compact High-Isolation MIMO Antenna with Coupling Neutralization Line,” 2020 IEEE Asia-Pacific Conf. Antennas Propagation, APCAP 2020 - Proc., vol. 2, pp. 2020–2022, 2020.
  • [65] J.F. Li, D. L. Wu, G. Zhang, Y.J. Wu, and C.X. Mao, “A Left/Right-Handed Dual Circularly-Polarized Antenna with Duplexing and Filtering Performance,” IEEE Access, vol. 7, pp. 35431–35437, 2019.
  • [66] P. Pannu and D. K. Sharma, “A Compact 2-Port Ultra-Wideband MIMO Antenna with Modified Ground Plane,” Proc. 4th Int. Conf. Inven. Syst. Control. ICISC 2020, no. Icisc, pp.553–557, 2020.
  • [67] K.A. Al-Hammami, A.R.S. Omar, M.M. Qwakneh, and Y.S. Faouri, “Hexagonal Patch Shaped MIMO Antenna for Frequency Agility,” 2020 IEEE Int. Conf. Commun. Networks Satell. Comnetsat 2020 - Proc., pp. 301–305, 2020.
  • [68] P. Pannu and D. K. Sharma, “UWB-MIMO Antenna with Stop Band behavior and High Isolation,” Proc. 2020 IEEE Int. Women Eng. Conf. Electr. Comput. Eng. WIECON-ECE 2020, pp. 276–279, 2020.
  • [69] R. Saleem, A. Quddus, M. Bilal, T. Shabbir, S.M. Abbas, and M.F. Shafique, “A Wideband MIMO Antenna with Fixed and Reconfigurable Band Notch Characteristics for UWB Systems,” 2020 IEEE Int. Symp. Antennas Propag. North Am. Radio Sci. Meet. IEEECONF 2020 - Proc., pp. 471–472, 2020.
  • [70] D.A. Tuan, L.Q. Tu, D.T.T. Tu, N.V. Hung, L.H. Thach, and N.H. Vu, “A compact decoupling structure applied in MIMO antennas for wideband radar applications,” Proc. - 2020 Int. Conf. Green Hum. Inf. Technol. ICGHIT 2020, pp. 50–53, 2020.
  • [71] N. Kalva, J.C. Dash, and J. Mukherjee, “Isolation Enhancement in Compact MIMO Antenna Using Dual-Stub Loaded Resonator,” 2020 IEEE Int. Symp. Antennas Propag. North Am. Radio Sci. Meet. IEEECONF 2020 - Proc., pp. 1391–1392, 2020.
  • [72] J.C. Dash, N. Kalva, S. Kharche, and J. Mukherjee, “Isolation Enhancement of Closely Spaced MIMO System Using Inverted Fork Shaped Decoupling Structure,” 14th Eur. Conf. Antennas Propagation, EuCAP 2020, pp. 29–31, 2020.
  • [73] A. Pant, M. Singh, and M. S. Parihar, “International Journal of Electronics and Communications Regular paper A frequency reconfigurable / switchable MIMO antenna for LTE and early 5G applications,” Int. J. Electron. Commun., vol. 131, no. February, 2021.
  • [74] A.M. Ibrahim, I.M. Ibrahim, and N.A. Shairi, “Compact MIMO slots antenna design with different bands and high isolation for 5G smartphone applications,” Baghdad Sci. J., vol. 16, no. 4, pp. 1093–1102, 2019.
  • [75] A.M. Ibrahim, I.M. Ibrahim, and N.A. Shairi, “Compact Vshaped MIMO Antenna for LTE and 5G Communications,” Prz. Elektrotechniczny, vol. 96, no. 10, pp. 43–46, 2020, doi: 10.15199/48.2020.10.07.
  • [76] A.M. Ibrahim, I.M. Ibrahim, and N.A. Shairi, “CompactV-shaped MIMO antenna for LTE and 5G applications,” Prz. Elektrotechniczny, vol. 96, no. 11, pp. 84–89, 2020.
  • [77] A.M. Ibrahim, I.M. Ibrahim, and N.A. Shairi, “Compact MIMO Antenna with High Isolation for 5G Smartphone Applications,” J. J. Eng. Sci. Technol., vol. 12, no. 6, pp. 121–125, 2019.
  • [78] A.M. Ibrahim, I.M. Ibrahim, and N.A. Shairi, “Compact Crescent Slot MIMO Antenna with Quad Bands and High Isolation for LTE and 5G communications,” Prz. Elektrotechniczny, vol. 96, no. 12, pp. 19–25, 2020.
  • [79] A.H. Mousa, M. Azlishah, B.I.N. Othman, M.Z. Abidin, and A.M. Ibrahim, “Sierpinski MIMO Antenna for 5G Applications,” Prz. Elektrotechniczny, no. 7, pp. 126–131, 2021.
  • [80] A.H. Mousa, M. Azlishah, B.I.N. Othman, M.Z. Abidin, and A. M. Ibrahim, “Fractal H-Vicsek MIMO Antenna for 5G Communications,” Prz. Elektrotechniczny, no. 6, pp. 15–20, 2021.
  • [81] A.M. Ibrahim, I.M. Ibrahim, and N.A. Shair , “Compact MIMO antenna for LTE and 5G applications,” Int. J. Microw. Opt. Technol, 15(4), pp.360-368,2020.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cabbc28f-1878-46a4-b517-48ea2c6e2422
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.