Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
IEEE 802.15.4 standard defines Physical (PHY) and Wireless Medium Access Control (MAC) layers for wireless sensor networks (WSN). In recent years, many types of wireless sensor networks have been developed based on this standard. Currently, probably the most popular implementation of the mentioned standard are wireless ZigBee networks. Moreover, ZigBee provides functions normally attributed to the higher layers of network protocol stack. Among those the most important functions are: routing of data, data encryption and providing redundancy connections between devices in the network. We present a slightly different approach to the construction of wireless sensor networks. This is the beginning of series of papers about implementation of the IEEE 802.15.4 standard and the previously mentioned expansion functions in the network, built with RFM wireless communication modules and ATmega processors. This paper describes the basics of compiling wireless connection and data transmission with using RFM modules. In addition, blocking and non-blocking types of connections between radio modules and ways to connect RFM modules with ATmega processors are described.
Wydawca
Czasopismo
Rocznik
Tom
Strony
438--442
Opis fizyczny
Bibliogr. 11 poz., rys., schem., tab., wykr.
Twórcy
autor
- Rzeszow University of Technology, Department of Electrical and Computer Fundamentals, 2 Wincentego Pola St., 35-959 Rzeszów, Poland
autor
- Warsaw University of Technology, Institute of Computer Science, 15/19 Nowowiejska St., 00-665 Warszawa, Poland
autor
- Silesian University of Technology, Faculty of Electrical Engineering, 2 Krzywoustego St., 44-100 Gliwice, Poland
Bibliografia
- [1] Abbasi Q. H, Rehman M. U, Liaqat S., Alomainy A.: Multiple input multiple output radio channel characterisation for ultra wideband body centric wireless communication. RF and Microwave Conference (RFM), IEEE International 2013.
- [2] Datasheet for ATmega8 - http://www.atmel.com/images/atmel-2486-8-bit-avr-microcontroller-atmega8_l_datasheet.pdf.
- [3] Dymora P., Mazurek M., Maciąg P.: System monitorujący pracę bezprzewodowej sieci sensorowej oparty na przestrzennych typach danych. PAK 2014 nr 10, p. 849-853, 2014
- [4] Dymora P., Mazurek M., Nieroda S.: Sensor network infrastructure for intelligent building monitoring and management system. Annales UMCS Informatica , Vol. 12 (2), 2012, pp. 59-71.
- [5] Chlumsky P., Vodrazka J.: Innovative Two-path Data Transmission Scheme Proposal. Elektronika Ir Elektrotechnika, Vol 20, No. 10, 2014.
- [6] Lim J. C., Wong K. D.: More Power-Efficient Data Gathering Trees for Wireless Sensor Networks. RF and Microwave Conference (RFM), IEEE International, 2006.
- [7] Logan S., Venugopal M.: Analysis of wireless system design for aircraft indoor wireless sensor communication. RF and Microwave Conference (RFM), IEEE International, 2013.
- [8] Faludi R.: Building Wireless Sensor Networks. Published by O’Reilly Media, Inc., 2011.
- [9] Martusevičius V., Kazanavičius E.: Self-localization System for Wireless Sensor Network. Elektronika Ir Elektrotechnika, Vol 103, No. 7, 2010.
- [10] Marsic I.: Wireless Networks - Local and Ad Hoc Networks. Department of Electrical and Computer Engineering and the CAIP Center, Rutgers University.
- [11] Severdaks A., Supols G., Greitans M., Selavo L.: Wireless Sensor Network for Distributed Measurement of Electrical Field”, Vol 107, No 1, Elektronika Ir Elektrotechnika, 2011.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cab93094-3975-4e18-8bfa-5bdc93fec14d