PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

General numerical description of a mass moving along a structure

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Jubilee Symposium Vibrations In Physical Systems (25 ; 15-19.05.2012 ; Będlewo koło Poznania ; Polska)
Języki publikacji
EN
Abstrakty
EN
The paper deals with vibrations of structures under a moving inertial load. The space-time finite element, approach has been used for a general description of the moving mass particle. Problems occur when we perform computer simulations. In the case of wave problem numerical description of the moving inertial loads requires great mathematical care. Otherwise we get a wrong solution. There is no commercial computing packages that would enable us direct simulation of moving loads, both gravitational and inertial.
Rocznik
Tom
Strony
135--140
Opis fizyczny
Bibliogr. 12 poz., 1 rys., wykr.
Twórcy
autor
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5b, 02-106 Warsaw, Poland
autor
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5b, 02-106 Warsaw, Poland
  • The Faculty of Automotive and Construction Machinery Engineering, Warsaw University of Technology, Narbutta 84, 02-524 Warsaw, Poland
Bibliografia
  • 1. D. M. Yoshida and W. Weaver. Finite-element analysis of beams and plates with moving loads. Intl. Assoc. Bridge Struc. Engr. 31(1) (1971) 179-195.
  • 2. F. V. Filho. Finite element analysis of structures under moving loads. The Shock and Vibration Digest, 10(8) (1978) 27-35.
  • 3. A. O. Cifuentes. Dynamic response of a beam excited by a moving mass. Finite Elem. Anal. and Des., 5(3) (1989) 237-246.
  • 4. J. R. Rieker, Y. H. Lin, and M. W. Trethewey. Discretization considerations in moving load finite element beam models. Finite Elem. Anal. and Des., 21 (1996) 129-144.
  • 5. B. Dyniewicz and C. I. Bajer. Numerical methods for vibration analysis of Timoshenko beam subjected to inertial moving load. In C. Cempel, editor, Vibrations in Physical Systems, pages 87-92, 2010.
  • 6. M. E. Gurtin. Variational principles for linear elastodynamics. Arch. Rat. Mech. Anal., 16 (1964) 34-50.
  • 7. M. E. Gurtin. Variational principles for linear initial – value problems. Quart. Appl. Math., 22 (1964) 252-256.
  • 8. I. Herrera and J. Bielak. A simplified version of Gurtin's variational principles. Arch. Rat. Mech. Anal., 53 (1974) 131-149.
  • 9. C. Bajer. Space-time finite element formulation for the dynamical evolutionary process. Appl. Math. and Comp. Sci., 3(2) (1993) 251-268.
  • 10. O. C. Zienkiewicz. The finite element method in engineering science. McGraw-Hill, London 1971.
  • 11. R. Cook, D. S. Malkus, and M. E. Plesha. Concepts and applications of finite element analysis. John Willey & Sons, third edition 1989.
  • 12. M. Petyt. Introduction to finite element vibration analysis. Cambridge University Press, Cambridge 1990.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cab2b316-7447-4515-b81a-2516a3bbca00
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.