Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper addresses the problem of grasp synthesis for grasping objects considering both object pose uncertainty and object dynamics. These two factors greatly affect success or failure in a real-world robotic grasping and should be considered simultaneously. The proposed approach is based on simulation of grasping process assuming that the 3D model of the object is known. Object geometry is modelled using superquadrics. To evaluate grasp quality three different measures are utilised. The proposed grasp synthesis approach will be implemented and tested on a real robot with multi-fingered hand.
Słowa kluczowe
Rocznik
Tom
Strony
53--61
Opis fizyczny
Bibliogr. 28 poz., rys.
Twórcy
autor
- Institute of Control and Computation Engineering, Warsaw University of Technology, ul. Nowowiejska 15/19, 00–665 Warsaw, Poland
Bibliografia
- [1] R. Balasubramanian, L. Xu, P. D. Brook, J. R. Smith, and Y. Matsuoka, “Physical human interactive guidance: Identifying grasping principles from human-planned grasps”, IEEE Transactions on Robotics, vol. 28, no. 4, 2012, 899–910. DOI: 10.1007/978-3-319-03017-322.
- [2] A. Barr, “Superquadrics and angle-preserving transformations”, IEEE Computer Graphics and Applications, vol. 1, no. 1, 1981, 11–23.
- [3] J. Bohg, A. Morales, T. Asfour, and D. Kragic, “Data-driven grasp synthesis – a survey”, IEEE Transactions on Robotics, vol. 30, no. 2, 2014, 289–309. DOI: 10.1109/TRO.2013.2289018.
- [4] R. Brost, “Automatic grasp planning in the presence of uncertainty”. In: IEEE International Conference on Robotics and Automation (ICRA), vol. 3, 1986, 1575–1581. DOI: 10.1109/ROBOT.1986.1087523.
- [5] V. N. Christopoulos, P. R. Schrater, “Handling shape and contact location uncertainty in grasping two-dimensional planar objects”. In: Proceedings of International Conference on Intelligent Robots and Systems (IROS), 2007, 1557–1563.DOI: 10.1109/IROS.2007.4399509.
- [6] H. Dang, P. K. Allen, “Stable grasping under pose uncertainty using tactile feedback”, Autonomous Robots, vol. 36, no. 4, 2014, 309–330. DOI: 10.1007/s10514-013-9355-y.
- [7] R. Diankov Openrave simulation environment. http://openrave.org/.
- [8] C. Ferrari, J. Canny, “Planning optimal grasps”. In: IEEE International Conference on Robotics and Automation, Nice, France, 1992, 2290–2295. DOI: 10.1109/ROBOT.1992.219918.
- [9] I. Gilitschenski, G. Kurz, S. Julier, U. Hanebeck, “A new probability distribution for simultaneous representation of uncertain position and orientation”. In: 17th International Conference on Information Fusion (FUSION), 2014.
- [10] K. Hsiao, L. P. Kaelbling, T. Lozano-Pérez, “Robust grasping under object pose uncertainty”, Autonomous Robots, vol. 31, no. 2-3, 2011, 253–268. DOI: 10.1007/s10514-011-9243-2.
- [11] A. Kasinski, Metody syntezy chwytu dla autonomicznych systemów manipulacyjnych (Grasp synthesis methods for autonomous manual systems), Poznan Univ. of Tech. Publ. House, 1998, (in Polish).
- [12] J. Kim, K. Iwamoto, J. J. Kuffner, Y. Ota, N. S. Pollard, “Physically based grasp quality evaluation under pose uncertainty”, IEEE Transactions on Robotics, vol. 29, no. 6, 2013, 1423–1439. DOI: 10.1109/TRO.2013.2273846.
- [13] T. Kornuta, M. Stefanczyk, W. Kasprzak. “Basic 3D solid recognition in RGB-D images”. In: R. Szewczyk, C. Zielinski, M. Kaliczynska, eds., Recent Advances in Automation, Robotics and Measuring Techniques, volume 267 of Advances in Intelligent Systems and Computing (AISC), chapter 40, 421–430. Springer, 2014. DOI: 10.1007/978-3-319-05353-040.
- [14] J. Laaksonen, E. Nikandrova, V. Kyrki, “Probabilistic sensor-based grasping”. In: IIEEE/RSJInternational Conference on Intelligent Robots and Systems (IROS), 2012, 2019–2026. DOI: 10.1109/IROS.2012.6385621.
- [15] Z. Li, S. S. Sastry, “Task-oriented optimal grasping by multifiingered robotic hands”, IEEE Journal of Robotics and Automation, vol. 4, no. 1, 1988, 32–44.
- [16] R. M. Murray, Z. Li, and S. S. Sastry, A Mathematical Introduction to Robotic Manipulation, CRC Press, 1994. DOI: Task-oriented optimal grasping by multifiingered robotic hands.
- [17] J. Napier, “The prehensile movements of the human hand”, The Journal of bone and joint surgery, vol. 38-B, no. 4, 1956, 902–913.
- [18] ODE. “Open Dynamics Engine”. http://ode.org/.
- [19] F. T. Pokorny, D. Kragic, “Classical grasp quality evaluation: New algorithms and theory”. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2013. DOI:10.1109/IROS.2013.6696854.
- [20] D. Prattichizzo, J. Trinkle, Springer Handbook of Robotics, chapter 28, Springer 2008, 671–700.
- [21] S. Sahbani, A. El-Khoury, P. Bidaud, “An overview of 3D object grasp synthesis algorithms”, Robotics and Autonomous Systems, vol. 60, no. 3, 2012, 326–336. DOI: 10.1016/j.robot.2011.07.016.
- [22] K. Shimoga, “Robot grasp synthesis algorithms: A survey”, Int. Journal of Robotics Research, vol. 15, no. 3, 1906, 230–266. Doi: 10.1177/027836499601500302.
- [23] M. Strand, Z. X., M. Zoellner, R. Dillmann, “Using superquadrics for the approximation of objects and its application to grasping”. In: IEEE International Conference on Robotics and Automation (ICRA), no. 48–53, 2010. DOI: 10.1109/ICINFA.2010.5512331.
- [24] W. Szynkiewicz, “Skill-based bimanual manipulation planning”, Journal of Telecommunications and Information Technology, no. 4, 2012, 54–62.
- [25] J. Weisz, P. K. Allen, “Pose error robust grasping from contact wrench space metrics”. In: IEEE International Conference on Robotics and Automation (ICRA), 2012, 557–562. Doi: 10.1109/ICRA.2012.6224697.
- [26] O. Williams, A. Fitzgibbon, “Gaussian process implicit surfaces”. In: Gaussian Processes in Practice Workshop, 2007.
- [27] Y. Zheng, “An effiicient algorithm for a grasp quality measure”, IEEE Transactions on Robotics, vol. 29, no. 2, 2013, 579–585. DOI:10.1109/TRO.2012.2222274.
- [28] C. Zielinski, T. Kornuta. “Specifiication of tasks in terms of object-level relations for a twohanded robot”. In: R. Szewczyk, C. Zieli?ski, and M. Kaliczy?ska, eds., Recent Advances in Automation, Robotics and Measuring Techniques, volume 267 of Advances in Intelligent Systems and Computing (AISC), 543–552. Springer, 2014. DOI:10.1007/978-3-319-05353-040.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cab03abb-ea2b-4b92-aacc-077feb9db6b2