Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents the methodology for evaluating mobile game players retention, which is the basis for generating economic income for its creators. The system for collecting and processing the in-game data (events related to the players’ actions) exploiting the Big Data cloud platform is described. The player profile with the crucial features allowing for the retention analysis is introduced. Datasets generated for the My Spa Resort mobile game by CherryPick company are described. The retention prediction approach based on the similarity estimation between the analyzed and already inactive players is presented. Results of the prediction using the k Nearest Neighbors (kNN) classifier are discussed.
Słowa kluczowe
Rocznik
Tom
Strony
1081--1087
Opis fizyczny
Bibliogr., 18 poz., rys., tab.
Twórcy
autor
- Warsaw University of Technology, Poland
autor
- Warsaw School of Economics
autor
- Warsaw University of Life Sciences
Bibliografia
- [1] “An important update on Concord,” [Online] https://blog.playstation.com/2024/09/03/an-important-update-on-concord/
- [2] M. Gosztonyi, “Who are the gamers? Profiling adult gamers using machine learning approaches,” Telematics and Informatics Reports, Vol. 11, 2023, https://doi.org/10.1016/j.teler.2023.100074
- [3] F. Erümit, S., Şılbır, L., Erümit, A. K., & Karal, H. “Determination of Player Types according to Digital Game Playing Preferences: Scale Development and Validation Study,” International Journal of Human-Computer Interaction, Vol. 37, No. 11, pp. 991-1002, 2020, https://doi.org/10.1080/10447318.2020.1861765
- [4] L. S. Ferro, S. P. Walz, and S. Greuter. “Towards personalised, gamified systems: an investigation into game design, personality and player typologies.” Proc. of The 9th Australasian Conference on Interactive Entertainment: Matters of Life and Death (IE '13), ACM, New York, NY, USA, https://doi.org/10.1145/2513002.2513024
- [5] J. Williams, R. Bendell, S. Fiore, and F. Jentsch, “Towards a Conceptual Framework of Comprehensive Video Game Player Profiles: Player Models, Mental Models, and Behavior Models,” Proc. Human Factors and Ergonomics Society Annual Meeting,. 65, pp. 807-811. https://doi.org/10.1177/1071181321651343
- [6] “How Game Studios Can Prioritize Long-Term Player Retention in 2024”, [Online] https://solsten.io/blog/player-retention-strategies
- [7] T. Allart, G. Levieux, M. Pierfitte, A. Guilloux and S. Natkin, "Design influence on player retention: A method based on time varying survival analysis," 2016 IEEE Conference on Computational Intelligence and Games (CIG), Santorini, Greece, 2016, pp. 1-8, doi: https://doi.org/10.1109/CIG.2016.7860421
- [8] L. Gu and A. L. Jia, "Player Activity and Popularity in Online Social Games and their Implications for Player Retention," 2018 16th Annual Workshop on Network and Systems Support for Games (NetGames), Amsterdam, Netherlands, pp. 1-6, 2018, https://doi.org/10.1109/NetGames.2018.8463415
- [9] B. Harrison and D. L. Roberts, "Analytics-driven dynamic game adaption for player retention in Scrabble," 2013 IEEE Conference on Computational Inteligence in Games (CIG), Niagara Falls, ON, Canada, 2013, pp. 1-8, https://doi.org/10.1109/CIG.2013.6633632
- [10] L. Pang, Z. Hu and Y. Liu, "How to Retain Players through Dynamic Quality Adjustment in Video Games," 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China, 2021, pp. 154-160, https://doi.org/10.1109/IAEAC50856.2021.9390827
- [11] Markus Viljanen, Antti Airola, Tapio Pahikkala, and Jukka Heikkonen, “Modelling user retention in mobile games,”. Proc.2016 IEEE Conference on Computational Intelligence and Games (CIG). IEEE Press, 2016, pp. 1-8. https://doi.org/10.1109/CIG.2016.7860393
- [12] S. Demediuk, A. Murrin, D. Bulger, M. Hitchens, A. Drachen, W. L. Raffe, and M. Tamassia. “Player retention in league of legends: a study using survival analysis,” Proc. of the Australasian Computer Science Week Multiconference (ACSW '18). Association for Computing Machinery, New York, NY, USA, pp. 1-9. https://doi.org/10.1145/3167918.3167937
- [13] A. Drachen, “Rapid Prediction of Player Retention in Free-to-Play Mobile Games,” [Online:] https://arxiv.org/pdf/1607.03202v1
- [14] R. Sifa, F. Hadiji, J. Runge, A. Drachen, K. Kersting, C. Bauckhage, “Predicting Purchase Decisions in Mobile Free-to-Play Games,” Eleventh Artificial Intelligence and Interactive Digital Entertainment Conference, Vol. 11, No. 1, 2015, https://doi.org/10.1609/aiide.v11i1.12788
- [15] https://www.bluestacks.com/pl/bluestacks-5.html
- [16] A.T. Tekin, and T. Kaya, “Retention Prediction in the Gaming Industry: Fuzzy Machine Learning Approach”, Industrial Engineering in the Age of Business Intelligence, 2023, pp. 102-117 https://doi.org/10.1007/978-3-031-08782-0_9
- [17] J.S. Baheri, “Predicting the retention of customers of sport gym using the K-nearest neighbor algorithm,” Sport Marketing Studies, 2024, Vol. 5 No. 1, pp. 69-86, https://doi.org/10.22034/SMS.2024.140657.1302
- [18] T.O. Hodson, “Root-mean-square error (RMSE) or mean absolute error (MAE): When to use them or not,” Geoscientific Model Development, 2022, Vol. 15, pp. 5481-5487, https://doi.org/10.5194/gmd-15-5481-2022
Uwagi
1. Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
2. This work was supported by National Centre of Research and Development, project number POIR.01.01.01-00-0927/17, acronym “Cherrylytics.”
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-caae76e7-3f20-4778-b095-82426dfa2aad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.