PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Effect of Mixing During Laboratory Fermentation of Maize Straw with Thermophilic Technology

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The interest in biogas production in Poland is growing rapidly. This is mostly due to the fact that there is a need for handling and managing the increasing quantities of diverse bio-waste generated by industry and agriculture. Therefore, good laboratory practices and correct preparation of batch tests are very important for planning of a full-scale biogas plant. The aim of the paper was to determine the effect of mixing in the laboratory batch reactors on the biogas yield of maize straw under thermophilic conditions. The scope of this work included: (1) the analysis of basic physical and chemical parameters and (2) laboratory determination of biogas and methane yield from anaerobic digestion of maize straw with different frequencies of mixing. The obtained biogas and methane yield from the thermophilic fermentation of maize straw mixed every day was 381.89 m3·Mg-1 FM and 184.97 m3·Mg-1 FM, respectively. The results of this study confirmed the effect of no mixing inside reactors. In the batch test a decrease in biogas and methane yields was observed, by approx. 60 m3·Mg-1 and approx. 28 m3·Mg-1, respectively.
Rocznik
Strony
93--98
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • Institute of Biosystems Engineering, Poznan University of Life Sciences, Wojska Polskiego No. 50, 60-637 Poznan, Poland
  • Institute of Biosystems Engineering, Poznan University of Life Sciences, Wojska Polskiego No. 50, 60-637 Poznan, Poland
  • Institute of Biosystems Engineering, Poznan University of Life Sciences, Wojska Polskiego No. 50, 60-637 Poznan, Poland
autor
  • Institute of Biosystems Engineering, Poznan University of Life Sciences, Wojska Polskiego No. 50, 60-637 Poznan, Poland
autor
  • Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego No. 48, 60-637 Poznan, Poland
autor
  • Institute of Biosystems Engineering, Poznan University of Life Sciences, Wojska Polskiego No. 50, 60-637 Poznan, Poland
  • Institute of Biosystems Engineering, Poznan University of Life Sciences, Wojska Polskiego No. 50, 60-637 Poznan, Poland
autor
  • China Agriculture University, Collage of Engineering, Haidian District No. 17, Beijing, China
autor
  • China Agriculture University, Collage of Engineering, Haidian District No. 17, Beijing, China
Bibliografia
  • 1. Appels L., Baeyens J., Degrève J., Dewil R. 2008. Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energy Combust Sci, 34, 755–781.
  • 2. Casey T.J. 1986. Elsevier App. Sci. Pub. 90–103, London.
  • 3. Chandra R., Takeuchi H., Hasegawa T. 2012. Methane production from lignocellulosic agricultural crop wastes: a review in context to second generation of biofuel production. Renew Sustain Energy Rev, 16, 1462–1476.
  • 4. Choong Y.Y., Norli I., Abdullah A.Z., Yhaya M.F. 2016. Impacts of trace element supplementation on the performance of anaerobic digestion process: A critical review. Bioresource Technology, 209, 369–379.
  • 5. Cieślik M., Dach J., Lewicki A., Smurzyńska A., Janczak D., Pawlicka-Kaczorowska J., Boniecki P., Cyplik P., Czekała W., Jóźwiakowski K. 2016. Methane fermentation of the maize straw silage under meso- and thermophilic conditions. Energy, 115 (2), 1495–1502.
  • 6. Czekała W., Dach J., Dong R., Janczak D., Malińska K., Jóźwiakowski K., Smurzyńska A., Cieślik M. 2017. Composting potential of the solid fraction of digested pulp produced by a biogas plant. Biosystems Engineering 160, 25–29.
  • 7. Czekała W. Dach, J., Czekała J.. 2015a. Operational possibilities of a biogas plant at the brewery under polish conditions. Proceedings of the 2nd International Conference on Energy & Environment: Bringing Together Engineering and Economics, 520–525.
  • 8. Czekała W., Dach, J., Przybył J., Boniecki P., Lewicki A., Carmona, P.C.R., Janczak D., Waliszewska H., 2015b. The energetic efficiency of solid fraction of digestate pulp from biogas plant in production of solid and gaseous biofuels – a case study of 1 MWel biogas plant in Poland. Proceedings of the 2nd International Conference on Energy & Environment: Bringing Together Engineering and Economics, 547–553.
  • 9. Dach J., Czekała W., Boniecki P., Lewicki A., Piechota T. 2014a Specialised Internet Tool for Biogas Plant Modelling and Marked Analysing. Advanced Materials Research Vol. 909: 305–310.
  • 10. Dach J., Boniecki P., Przybył J., D. Janczak, A. Lewicki, W. Czekała, K. Witaszek, P.C. Rodriguez Carmona, M. Cieślik. 2014b. Energetic efficiency analysis of the agricultural biogas plant in 250 kW(e) experimental installation. Energy, 69, 34–38.
  • 11. Dach J., Koszela K., Boniecki P., Zaborowicz M., Lewicki A., Czekała W., Skwarcz J., Wei Qiao, Piekarska-Boniecka H., Białobrzewski I. 2016. The use of neural modelling to estimate the methane production from slurry fermentation processes. Renewable and Sustainable Energy Reviews 56, 603–610.
  • 12. Deublein D., Steinhauser A. 2008. Biogas from waste and renewable sources: an introduction. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
  • 13. DIN 38 414. 1985. Bestimmung des Faulverhaltens “Schlamm und Sedimente”. Beuth Verlag GmbH, Berlin.
  • 14. Gunaseelan V.N. 1997. Anaerobic digestion of biomass for methane production: a review. Biomass Bioenergy, 13, 83–114.
  • 15. Kaltschmitt M., Hartmann H. 2001. Energie aus Biomasse – Grundlagen, Techniken und Verfahren. Springer Verlag Berlin, Heidelberg, New York.
  • 16. Kazimierowicz J. 2017. Biogas acquisition from selected mixtures of expired food products. Journal of Ecological Engineering, 18 (4), 118–122.
  • 17. Lee S.R., Cho N.K., Maeng W.J., 1995. Using the pressure of biogas created during anaerobic digestion as the source of mixing power. Journal of Fermentation Bioenineering., 80 (4), 415–417.
  • 18. Lewicki A., Carmona, P.C.R., Dach, J., Boniecki, P., Janczak, D., Czekala, W., Cieslik, M., Przybył, J. 2015. Energetic aspects of food waste used as an alternative substrates for biogas plant, Proceedings Of The 2nd International Conference On Energy & Environment: Bringing Together Engineering and Economics, ICEE International Conference on Energy & Environment, 714–720.
  • 19. Lewicki A., Dach J., Janczak D., Czekała W., 2013 The Experimental Macro Photoreactor for Microalgae Production. Procedia Technology, 8, 622–627.
  • 20. Lindmark J., Thorin E., Fdhila R.B., Dahlquista E. 2014. Effects of mixing on the result of anaerobic digestion: Review. Renewable and Sustainable Energy Reviews 40, 1030–1047.
  • 21. Mao C., Feng Y., Wang X., Ren G. 2015. Review on Research Achievements of Biogas from Anaerobic Digestion. Renewable and Sustainable Energy Reviews, 45, 540–555.
  • 22. Mata-Alvarez J., Macé S., Llabrés P. 2000. Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresour Technol, 74, 3–16.
  • 23. Maurer M. Winkler J-P. 1980. Biogas – Theoretische Grundlagen, Bau und Betrieb von Anlagen. Verlag C.F. Müller. Karlsruhe.
  • 24. Nagao N., Tajima N., Kawai M., Niwa C., Kurosawa N., Matsuyama T., Yusoff M.F., Toda T. 2012. Maximum organic loading rate for the single-stage wet anaerobic digestion of food waste. Bioresour. Technol., 118, 210–218.
  • 25. Oslaj M., Mursec B., Vindis P. 2010. Biogas production from maize hybrids. Biomass and Bioenergy, 34, 1538–1545.
  • 26. Satjaritanun P., Khunatorn Y., Vorayos N., Shimpalee S., Bringley E. 2016. Numerical analysis of the mixing characteristic for napier grass in the continuous stirring tank reactor for biogas production. Biomass and Bioenergy, 86, 53–64.
  • 27. Smith L.C., Elliot D.J., James A. 1996. Mixing in upflow anaerobic filters and its influence on performance and scale-up. Wat. Res., 30 (12), 3061–3073.
  • 28. Ward A.J., Hobbs P.J., Holliman P.J., Jones D.L. 2008. Optimisation of the anaerobic digestion of agricultural resources. Bioresour Technol, 99, 7928–7940.
  • 29. Wellinger A., Murphy J., Baxter D. 2013. The biogas handbook. Sciance, production and applications, Woodhead Publishing Limited 2013.
  • 30. Wiater J., Horysz M. 2017. Organic waste as a substrat in biogas production. Journal of Ecological Engineering, 18, 5, 226–234.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-caad2faf-bcaa-40df-84fb-7245dc025740
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.