PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Normalization of Multifocal Acoustic Radiation Force Impulse Images

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Imaging the tissue displacements caused by Acoustic Radiation Force Impulse (ARFI) provides qualitative tissue elasticity maps around the focus. To increase imaging range, multi-focus techniques combine several images obtained with different focal depths. Since the acoustic radiation force depends on focus depth, axial distance and steering angle, a normalization process is required before blending multi-focal ARFI images so that changes in the displayed displacements represent true tissue elasticity variations. This work analyzes the sources of displacement variability in multi-focal-zone ARFI and proposes a procedure to normalize and combine partial images. The proposal is based on the system focal configuration, transducer characteristics and global tissue parameters found by ultrasonic measurements. Performance of the proposed algorithm is experimentally evaluated with tissue mimicking phantoms.
Słowa kluczowe
Rocznik
Strony
321--331
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
Twórcy
  • Ultrasonic Systems and Technology Group (GSTU), Spanish National Research Council (CSIC), Serrano 144, 28006 Madrid, Spain
autor
  • Ultrasonic Systems and Technology Group (GSTU), Spanish National Research Council (CSIC), Serrano 144, 28006 Madrid, Spain
Bibliografia
  • 1. Bercoff J., Tanter M., Fink M. (2004), Supersonic shear imaging: a new technique for soft tissue elasticity mapping, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 51, 4, 396–409.
  • 2. Camacho J., Medina L., Cruza J. F., Moreno J. M., Fritsch C. (2012), Multimodal ultrasonic imaging for breast cancer detection, Archives of Acoustics, 37, 3, 253–260.
  • 3. Catheline S., Thomas J. L., Wu F., Fink M. A. (1999), Diffraction field of a low frequency vibrator in soft tissues using transient elastography, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 46, 4, 1013–1019.
  • 4. Gao L., Parker K. J., Alam S. K., Lerner L. M. (1995), Sonoelasticity imaging: Theory and experimental verification, J. Acoust. Soc. Am., 97, 6, 3875–3886.
  • 5. González-Salido N., Medina L., Cruza J., Camacho J. (2015), Implementation and Evaluation of Elastographic Techniques, Physics Procedia, 63, 97–102.
  • 6. Hall T. J., Bilgen M., Insana M. F., Krouskop T. A. (1997), Phantom materials for elastography, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 44, 6, 1355–1365.
  • 7. Hoyt K., Forsberg F., Ophir J. (2006), Comparison of shift estimation strategies in spectral elastography, Ultrasonics, 44, 99–108.
  • 8. Kino G. S. (1987), Acoustic waves: devices, imaging and analog signal processing, Prentice Hall, Inc., A Division of Simon & Schuster, Englewood Cliffs, New Jersey.
  • 9. Montaldo G., Tanter M., Bercoff J., Benech N., Fink M. (2009), Coherent plane-wave compounding for very high frame rate ultrasonography and transient elastography, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 56, 3, 489–506.
  • 10. Nightingale K. (2011), Acoustic Radiation Force Impulse (ARFI) Imaging: a Review, Curr. Med Imaging Rev., 7, 4, 328–339.
  • 11. Ophir J., Céspedes I., Ponnekanti H., Yazdi Y., Li X. (1991), Elastography: A quantitative method for imaging the elasticity of biological tissues, Ultrasonic Imaging, 13, 2, 111–134.
  • 12. Opieliński K. J. (2012), Ultrasonic Projection [in:] Ultrasonic Waves, Antunes Dos Santos Júnior [Ed.], pp. 29–58, INTECH, Rijeka, Croatia.
  • 13. Opieliński K. J., Pruchnicki P., Gudra T., Podgórski, P., Kraśnicki T., Kurcz J., Sąsiadek M. (2013), Ultrasound Transmission Tomography Imaging of Structure of Breast Elastography Phantom Compared to US, CT and MRI, Archives of Acoustics, 38, 3, 321–334.
  • 14. Opieliński K. J., Pruchnicki P., Gudra T., Majewski J. (2014), Conclusions from a test of multimodal ultrasound tomography research system designed for breast imaging, Forum Acusticum, 7–12 Sept., Kraków, Poland.
  • 15. Parker K. J., Taylor L. S., Gracewski S., Rubens D. J. (2005), A unified view of imaging the elastic properties of tissue, J. Acoust. Soc. Am., 117, 5, 2705–2712.
  • 16. Rosenzweig S., Palmeri M., Nightingale K. (2015), Analysis of Rapid Multi-Focal-Zone ARFI Imaging, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 62, 2, 280–289.
  • 17. Roy O., Schmidt S., Li C., Allada V., West E., Kunz D., Duric N. (2013), Breast imaging using ultrasound tomography: from clinical requirements to system design, proceedings of Joint UFFC, EFTF and PFM Symposium, pp. 1174–1177.
  • 18. Sarvazyan A., Hall T. J., Urban M. V., Fatemi M., Aglyamov S. R., Garra B. S. (2011), An overview of elastography – An emerging branch of medical imaging, Curr. Med. Imaging Rev., 7, 4, 255–282.
  • 19. Sharma A., Trahey G., Frinkley K., Soo M. S., Palmeri M., Nightingale K. (2005), Image processing and data acquisition optimization for Acoustic Radiation Force Impulse imaging of in vivo breast masses, Proceedings of SPIE Proc. Medical Imaging, 5750, pp. 205–215.
  • 20. Srinivasan S., Ophir J. (2003), A zero-crossing strain estimator for elastography, Ultrasound Med. Biol., 29, 2, 227–238.
  • 21. Starritt H., Duck F., Humphrey V. (1991), Forces acting in the direction of propagation in pulsed ultrasound fields, Phys. Med. Biol., 36, 1465–1474.
  • 22. Sugimoto T., Ueha S., Itoh K. (1990), Tissue hardness measurement using the radiation force of focused ultrasound, Proceedings of IEEE Ultrasonics Symposium, pp. 1377–1380, Honolulu.
  • 23. Tanter M., Fink M. (2014), Ultrafast imaging in biomedical ultrasound, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 61, 1, 102–119.
  • 24. Varghese T., Ophir J. (1996), Estimating tissue strain from signal decorrelation using the correlation coefficient, Ultrasound Med. Biol., 22, 9, 1249–1254.
  • 25. Walker W., Trahey G. (1995), A fundamental limit on delay estimation using partially correlated speckle signals, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 42, 2, 301–308.
  • 26. Wiskin J., Borup D., Johnson M., Robinson D., Smith J., Chen J., Parisky Y., Klock J. (2010), Inverse scattering and refraction corrected reflection for breast cancer imaging, Proceedings of Medical Imaging, Proc. SPIE, 7629, pp. 1–12.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-caa809e1-225e-4a3d-af84-ae34eba9ef44
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.