PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermodynamic approach to the development and selection of hardfacing materials in energy industry

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The overall study objection is selection and optimization all available thermodynamic data required for using calculation of phase diagram (CALPHAD) technique within the Fe-C-Cr-Mn-Si-Ti system. Such data collected in the thermodynamic database can be used for predicting the phase constitution states of a given composition for Fe-based hardfacing materials, which often use in energy industry in order to increase the abrasion and impact wear resistance of equipment parts. In order to compare theroretical calculation results with experimental data, four different types of hardfacing were deposited using flux-cored arc welding. Microstructure and chemical composition of deposited layers was investigated using optical and scanning electron microscopy together with energy dispersive X-ray spectroscopy. Comparison of experimental and computed results shows that they are in good agreement in meaning of presence of all-important phase equilibrium regions. The developed database can be used for rational selection of hardfacing materials for energy industry equipment and reasonable choice of new alloying systems.
Wydawca
Rocznik
Tom
Strony
84--89
Opis fizyczny
Bibliogr. 47 poz., rys., tab.
Twórcy
autor
  • Middle Technical University Engineering Technical College of Baghdad Alzafaraniya str., Baghdad, Iraq
  • Ivano-Frankivsk National Technical University of Oil and Gas Institute of Mechanical Engineering Karpatska St., 15, 76019 Ivano-Frankivsk, Ukraine
  • Ivano-Frankivsk National Technical University of Oil and Gas Institute of Mechanical Engineering Karpatska St., 15, 76019 Ivano-Frankivsk, Ukraine
  • Ivano-Frankivsk National Technical University of Oil and Gas Institute of Mechanical Engineering Karpatska St., 15, 76019 Ivano-Frankivsk, Ukraine
  • Ivano-Frankivsk National Technical University of Oil and Gas Institute of Mechanical Engineering Karpatska St., 15, 76019 Ivano-Frankivsk, Ukraine
  • Ivano-Frankivsk National Technical University of Oil and Gas Institute of Mechanical Engineering Karpatska St., 15, 76019 Ivano-Frankivsk, Ukraine
Bibliografia
  • [1] D. L. Lutsak, P. M. Prysyazhnyuk, M. O. Karpash, V. M. Pylypiv, and V. O. Kotsyubynsky, “Formation of Structure and Properties of Composite Coatings TiB2 – TiC – Steel Obtained by Overlapping of Electric-Arc Surfacing and Self-Propagating High-Temperature Synthesis,” Metallofizika i Noveishie Tekhnologii, vol. 38, no. 9, pp. 1265-1278, Dec. 2016. https://doi.org/10.15407/mfint.38.09.1265.
  • [2] Y. A. Kryl’ and P. M. Prysyazhnyuk, “Structure formation and properties of NbC-Hadfield steel cermets,” Journal of Superhard Materials, vol. 35, no. 5, pp. 292-297, Sep. 2013. https://doi.org/10.3103/s1063457613050043.
  • [3] P. Prysyazhnyuk, D. Lutsak, L. Shlapak, V. Aulin, L. Lutsak, L. Borushchak, and T. A. Shihab, “Development of the composite material and coatings based on niobium carbide,” Eastern-European Journal of Enterprise Technologies, vol. 6, no. 12 (96), pp. 43-49, Dec. 2018. https://doi.org/10.15587/1729-4061.2018.150807.
  • [4] O. Bulbuk, A. Velychkovych, V. Mazurenko, L. Ropyak, and T. Pryhorovska, “Analytical estimation of tooth strength, restored by direct or indirect restorations,” Engineering Solid Mechanics, pp. 193-204, 2019. https://doi.org/10.5267/ j.esm.2019.5.004.
  • [5] P. M. Prysyazhnyuk, T. A. Shihab, and V. H. Panchuk, “Formation of the Structure of Cr3C2–MNMts 60-20-20 Cermets,” Materials Science, vol. 52, no. 2, pp. 188-193, Sep. 2016. https://doi.org/10.1007/s11003-016-9942-0.
  • [6] B. Hallstedt, A. V. Khvan, B. B. Lindahl, M. Selleby, and S. Liu, “PrecHiMn-4—A thermodynamic database for high-Mn steels,” Calphad, vol. 56, pp. 49-57, Mar. 2017. https://doi.org/10.1016/j.calphad.2016.11.006.
  • [7] B.-J. Lee, “On the stability of Cr carbides” , Calphad, vol. 16, no. 2, pp. 121-149, Apr. 1992. https://doi.org/10.1016/0364-5916(92)90002-F.
  • [8] B.-J. Lee, “A thermodynamic evaluation of the Fe-Cr-Mn-C system”, Metallurgical Transactions A, vol. 24, no. 5, pp. 1017–1025, May 1993. https://doi.org/10.1007/ bf02657232.
  • [9] S. Wang, K. Wang, G. Chen, Z. Li, Z. Qin, X. Lu, and C. Li, “Thermodynamic modeling of Ti-Fe-Cr ternary system,” Calphad, vol. 56, pp. 160-168, Mar. 2017. https://doi.org/ 10.1016/j.calphad.2016.12.007.
  • [10] L. Y. Chen, C. H. Li, K. Wang, H. Q. Dong, X. G. Lu, and W. Z. Ding, “Thermodynamic modeling of Ti–Cr–Mn ternary system,” Calphad, vol. 33, no. 4, pp. 658-663, Dec. 2009. https://doi.org/10.1016/j.calphad.2009.08.002.
  • [11] A. Berche, J. C. Tédenac, and P. Jund, “Ab-initio calculations and CALPHAD description of Cr–Ge–Mn and Cr–Ge–Si,” Calphad, vol. 49, pp. 50-57, Jun. 2015. https://doi.org/ 10.1016/j.calphad.2015.02.004.
  • [12] A. Berche, J.-C. Tédenac, and P. Jund, “Thermodynamic description of the Cr-Mn-Si system,” Calphad, vol. 55, pp. 181– 188, Dec. 2016. https://doi.org/10.1016/j.calphad. 2016.09.002.
  • [13] A. Berche, E. Ruiz-Théron, J.-C. Tedenac, R.-M. Ayral, F. Rouessac, and P. Jund, “Thermodynamic description of the Mn–Si system: An experimental and theoretical work,” Journal of Alloys and Compounds, vol. 615, pp. 693-702, Dec. 2014. https://doi.org/10.1016/j.jallcom.2014.06.202.
  • [14] B. Sundman and J. Ågren, “A regular solution model for phases with several components and sublattices, suitable for computer applications,” Journal of Physics and Chemistry of Solids, vol. 42, no. 4, pp. 297-301, Jan. 1981. https://doi.org/10.1016/0022-3697(81)90144-x
  • [15] A. Dinsdale. “SGTE Data for Pure Elements”, Calphad, vol. 15, pp. 317-425. Oct.–Dec. 1991. https://doi.org/10.1016/ 0364-5916(91)90030-N.
  • [16] M. Hillert and M. Jarl, “A model for alloying in ferromagnetic metals,” Calphad, vol. 2, no. 3, pp. 227-238, Jan. 1978. https://doi.org/10.1016/0364-5916(78)90011-1.
  • [17] M. Hillert, “The compound energy formalism,” Journal of Alloys and Compounds, vol. 320, no., pp. 161-176, May 2001. https://doi.org/10.1016/s0925-8388(00)01481-x
  • [18] A. V. Khvan, B. Hallstedt, and K. Chang, “Thermodynamic assessment of Cr–Nb–C and Mn–Nb–C systems”, Calphad, vol. 39, pp. 54–61, Dec. 2012. https://doi.org/10.1016/j.calphad.2012.09.002.
  • [19] P. Gustafson, “A Thermodynamic Evaluation of the Fe-C System”, Metallurgical Transactions A, vol. 14, no. 5, pp. 259- 267., 1985. https://doi.org/10.1016/0364-5916(88)90025-9
  • [20] B. Hallstedt, D. Djurovic, J. von Appen, R. Dronskowski, A. Dick, F. Körmann, T. Hickel, and J. Neugebauer, “Thermodynamic properties of cementite (Fe3C),” Calphad, vol. 34, no. 1, pp. 129-133, Mar. 2010. https://doi.org/10.1016/j.calphad.2010.01.004
  • [21] W. Huang, “A thermodynamic assessment of the Fe-Mn-C system,” Metallurgical Transactions A, vol. 21, no. 8, pp. 2115-2123, Aug. 1990. https://doi.org/10.1007/ bf02647870
  • [22] J.-O. Andersson, “A thermodynamic evaluation of the FeMo-C system,” Calphad, vol. 12, no. 1, pp. 9-23, Jan. 1988. https://doi.org/10.1361/105497102770331569
  • [23] D. Djurovic, B. Hallstedt, J. von Appen, and R. Dronskowski, “Thermodynamic assessment of the Fe–Mn–C system,” Calphad, vol. 35, no. 4, pp. 479-491, Dec. 2011. https://doi.org/10.1016/j.calphad.2011.08.002.
  • [24] W. Huang, “Thermodynamic properties of the Fe-Mn-V-C system, ”Metallurgical Transactions A, vol. 22, no. 9, pp. 1911-1920, Sep. 1991. https://doi.org/10.1007/ bf02669859
  • [25] D. Djurovic, B. Hallstedt, J. von Appen, and R. Dronskowski, “Thermodynamic assessment of the Mn–C system,” Calphad, vol. 34, no. 3, pp. 279–285, Sep. 2010. https://doi.org/10.1016/j.calphad.2010.05.002
  • [26] A. Fernandez Guillermet and W. Huang, “Thermodynamic analysis of stable and metastable carbides in the Mn-V-C system and predicted phase diagram,” International Journal of Thermophysics, vol. 12, no. 6, pp. 1077-1102, Nov. 1991. https://doi.org/10.1007/bf00503520
  • [27] J. Gröbner, H. L. Lukas, and F. Aldinger, “Thermodynamic calculation of the ternary system Al-Si-C,” Calphad, vol. 20, no. 2, pp. 247-254, Jun. 1996. https://doi.org/10.1016/s0364- 5916(96)00027-2 .
  • [28] J. Lacaze and B. Sundman, “An assessment of the Fe-C-Si system,” Metallurgical Transactions A, vol. 22, no. 10, pp. 2211- 2223, Oct. 1991. https://doi.org/10.1007/bf02664987
  • [29] Y. Du, J. C. Schuster, and L. Perring, “Experimental Investigation and Thermodynamic Description of the Constitution of the Ternary System Cr-Si-C,” Journal of the American Ceramic Society, vol. 83, no. 8, pp. 2067-2073, Dec. 2004. https://doi.org/10.1111/j.1151-2916.2000.tb01513.x
  • [30] L F.S. Dumitrescu, M. Hillert and B. Sundmann, “A reassessment of Ti-C-N based on a critical review of available assessments of Ti-N and Ti-C,” Zeitschrift fuer Metallkunde, vol. 90, no. 7, pp. 534-541, Jul. 1999. https://doi.org/10.1034/ j.1600-0692.2002.310105.x
  • [31] H. Chen, Y. Du, and J. C. Schuster, “On the melting of Cr5Si3 and update of the thermodynamic description of Cr–Si,” Calphad, vol. 33, no. 1, pp. 211-214, Mar. 2009. https://doi.org/ 10.1016/j.calphad.2008.05.005
  • [32] Y. Du and J. C. Schuster, “Experimental investigation and thermodynamic description of the Cr-Si-Ti system,” Scandinavian Journal of Metallurgy, vol. 31, no. 1, pp. 25-33, Feb. 2002. https://doi.org/10.1034/j.1600-0692.2002.310105.x [33] W. Huang, “An assessment of the Fe-Mn system,” Calphad, vol. 13, no. 3, pp. 243-252, Jul. 1989. https://doi.org/ 10.1016/0364-5916(89)90004-7
  • [34] S. Cui and I.-H. Jung, “Critical reassessment of the Fe-Si system,” Calphad, vol. 56, pp. 108-125, Mar. 2017. https://doi.org/10.1016/j.calphad.2016.11.003
  • [35] A. Forsberg and J. Agren, “Thermodynamics, Phase Equilibria and Martensitic Transformation in Fe-Mn-Si Alloys,” MRS Proceedings, vol. 246, 1991.https://doi.org/10.1557/proc246-289.
  • [36] M. Lindholm, “A thermodynamic description of the Fe-Cr-Si system with emphasis on the equilibria of the sigma (Σ) phase,” Journal of Phase Equilibria, vol. 18, no. 5, pp. 432- 440, Sep. 1997. https://doi.org/10.1007/bf02647699.
  • [37] L. F. S. Dumitrescu, M. Hillert, and N. Sounders, “Comparison of Fe-Ti assessments,” Journal of Phase Equilibria, vol. 19, no. 5, pp. 441-448, Oct. 1998. https://doi.org/10.1361/ 105497198770341923.
  • [38] “COST507 database for light alloys. Internet: http://www.opencalphad.com/, [Feb. 01, 2020].
  • [39] H. J. Seifert, H. L. Lukas, and G. Petzow, “Thermodynamic optimization of the Ti-Si system,” Zeitschrift fuer Metallkunde, vol. 87, no. 1, pp. 2-13, Jan. 1996.
  • [40] M. Hillert and C. Qiu, “A reassessment of the Fe-Cr-Mo-C system,” Journal of Phase Equilibria, vol. 13, no. 5, pp. 512- 521, Oct. 1992. https://doi.org/10.1007/bf02665764.
  • [41] J. C. Schuster and Y. Du, “Thermodynamic description of the system Ti-Cr-C,” Calphad, vol. 23, no. 3-4, pp. 393-408, Sep. 1999. https://doi.org/10.1016/s0364-5916(00)00009-2.
  • [42] J. Miettinen, “Reassessed thermodynamic solution phase data for ternary Fe-Si-C system”, Calphad, vol. 22, no. 2, pp. 231-256, Jun. 1998. https://doi.org/10.1016/s0364- 5916(98)00026-1
  • [43] L. F. S. Dumitrescu and M. Hillert, “Reassessment of the Solubility of TiC and TiN in Fe.,” ISIJ International, vol. 39, no. 1, pp. 84-90, 1999. https://doi.org/10.2355/ isijinternational.39.84
  • [44] B.-J. Lee, “Thermodynamic assessment of the Fe-Nb-Ti-C-N system,” Metallurgical and Materials Transactions A, vol. 32, no. 10, pp. 2423-2439, Oct. 2001. https://doi.org/10.1007/s11661-001-0033-x
  • [45] Y. Du, J. C. Schuster, H. J. Seifert, and F. Aldinger, “Experimental Investigation and Thermodynamic Calculation of the Titanium Silicon Carbon System,” Journal of the American Ceramic Society, vol. 83, no. 1, pp. 197-203, Jan. 2000. https://doi.org/10.1111/j.1151-2916.2000.tb01170.x
  • [46] J. Miettinen, “Thermodynamic description of solution phases of systems Fe-Cr-Si and Fe-Ni-Si with low silicon contents and with application to stainless steels,” Calphad, vol. 23, no. 2, pp. 249-262, Jun. 1999. https://doi.org/10.1016/s0364-5916(99)00028-0
  • [47] S. Cui and I.-H. Jung, “Thermodynamic Assessments of the Fe-Si-Cr and Fe-Si-Mg Systems,” Metallurgical and Materials Transactions A, vol. 48, no. 9, pp. 4342-4355, Jun. 2017. https://doi.org/10.1007/s11661-017-4163-1
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-caa42685-fb1a-49e8-b33d-d93a07fa35aa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.