Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
The article discusses the effect of the diameter and spacing between impurities (size up to 2 μm) on the fatigue strength coefficient of structural steel during rotary bending. The study was performed on 21 heats produced in an industrial plant. Fourteen heats were produced in 140 ton electric furnaces, and 7 heats were performed in a 100 ton oxygen converter. All heats were desulfurized. Seven heats from electrical furnaces were refined with argon, and heats from the converter were subjected to vacuum circulation degassing. Steel sections with a diameter of 18 mm were hardened for 30 minutes from the austenitizing temperature of 880°C and tempered at a temperature of 200, 300, 400, 500 and 600°C. The experimental variants were compared in view of the applied melting technology and heat treatment options. The results were presented graphically and mathematically to account for the correlations between the fatigue strength coefficient during rotary bending, the diameter of and spacing between submicroscopic impurities. Equations for calculating the fatigue strength coefficient at each tempering temperature and a general equation for all tempering temperatures were proposed. Equations for estimating the fatigue strength coefficient based on the relative volume of submicroscopic non-metallic inclusions were also presented. The relationship between the fatigue strength and hardness of highgrade steel vs. the quotient of the diameter of impurities and the spacing between impurities, and the fatigue strength and hardness of steel vs. the relative volume of submicroscopic non-metallic impurities were determined.
Wydawca
Czasopismo
Rocznik
Tom
Strony
519--524
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wzory
Twórcy
autor
- University of Warmia and Mazury in Olsztyn, Faculty of Technical Sciences, 11 Oczapowskiego Str., 10-957 Olsztyn, Poland
Bibliografia
- [1] S. Kocańda, Fatigue cracking of metals. WNT Warsaw 1985 (in Polish).
- [2] D. Spriestersbach, P. Grad, E. Kerscher, Int. J. Fatigue 64, 114 (2014).
- [3] S. Beretta, Y. Murakami, Mater. Trans. B 32B, 517 (2001).
- [4] J. Kloch, B. Billia, T. Okane, T. Umeda, W. Wołczyński, Mater. Sci. Forum 329/330, 31 (2000).
- [5] T. Himemiya, W. Wołczyński, Mater. Trans. 43, 2890 (2002).
- [6] W. Wołczyński, E. Guzik, B. Kania, W. Wajda, Archives of Foundry Engineering 9, 254 (2009).
- [7] T. Hongand, T. Debroy, Metall. Mater. Trans. B 34B, 267 (2003).
- [8] W. Wołczyński, E. Guzik, W. Wajda, D. Jędrzejczyk, B. Kania, M. Kostrzewa, Arch Metall Mater 57, 105 (2012).
- [9] W. Wołczyński, W. Wajda, E. Guzik, Sol. St. Phen. 197, 174 (2013).
- [10] E. A. Chichkarev, Metallurgist 53, 728 (2009).
- [11] T. Lipiński, A. Wach, in: 23rd International Conference on Metallurgy and Materials, Metal 2014, TANGER Ltd. Ostrava 738 (2014).
- [12] T. Lipiński, A. Wach, Sol. St. Phenom. 223, 46 (2015).
- [13] T. Lipiński, A. Wach, Archives of Foundry Engineering 12 (2), 55 (2012).
- [14] M. G. Hebsur, K. P. Abracham, V. V. Prasad, Eng. Fract. Mech. 13 (4), 851 (1980).
- [15] W. Wołczyński, J. Kloch, Mater. Sci. Forum 329/330, 345 (2000).
- [16] J. Kowalski, J. Pstruś, S. Pawlak, M. Kostrzewa, R. Martynowski, W. Wołczyński, Arch. Metal. Mater. 56, 1029 (2011).
- [17] W. Wołczyński, M. Bobadilla, A. Dytkowicz, Arch. Metall. Mater. 45, 303 (2000).
- [18] T. Cornelius, K. Birger, I. Nils-Gunnar, Mater Trans A 37A, 2995 (2006)
- [19] Y. Hai-Liang, L. Xiang-Hua, B. Hong-Yun, Ch. Li-Qing, J. Mater. Process. Tech. 209, 455 (2009 ).
- [20] W. Wołczyński, Defect Diffus Forum 272, 123 (2007).
- [21] Y. Murakami, M. Endo, Int. J. Fatigue 16 (3), 163 (1994).
- [22] W. Wołczyński, Arch. Metall. Mater. 62 (2015) (in print).
- [23] J.M. Zhang, S.X. Li, Z.G. Yang, G.Y. Li, W.J. Hui, Y.Q. Weng, Int. J. Fatigue 29, 765 (2007).
- [24] J. M. Hang, S. X. Li, Z. G. Yang, G. Y. Li, W. J. Hui, Y. Q. Weng, Int. J. Fatigue 29 (2007).
- [25] S. Maropoulos, N. Ridley, Mater. Sci. Eng. A 384, 64 (2004).
- [26] Y. Murakami, S. Kodama, S. Konuma, Int. J. Fatigue 11 (5), 291 (1989).
- [27] T. Lipiński, A. Wach, in: Engineering for Rural Development Jelgava, 795 (2015).
- [28] Z. G. Yang, S. X. Li, Y. D. Li, Y. B. Liu, W. J. Hui, Y. Q. Weng, Mater. Sci. Eng. A 527, 559 (2010).
- [29] T. Lis, Metall. Foundry Eng. 1 (28), 29 (2002).
- [30] T. Lipiński, A. Wach, Arch. Metall. Mater. 60 (1), 65 (2015).
- [31] V.S. Gulyakov, A.S. Vusikhis, D.Z. Kudinov, Steel. Transl. 42 (11), 781 (2012).
- [32] A. Roiko, H. Hänninen, H. Vuorikari, Int. J. Fatigue 41, 158 (2012).
- [33] V.V. Pavlov, L.V. Korneva, Steel. Transl. 41 (10), 873 (2011).
- [34] Ch. G. Aneziris, Ch. Schroeder, M. Emmel, G. Schmidt, H. P. Heller, H. Berek, Mater. Trans. B 44B, 954 (2015).
- [35] X. Shao, X. Wang, Ch. Ji, H. Li, Y. Cui, G. Zhu, Int. J. Min. Met. Mater. 22 (5), 483 (2015).
- [36] S. Kocańda, J. Szala, Basis of fatigue calculation. PWN Warsaw 1985 (in Polish).
- [37] Guide engineer. Mechanic. Scientific and Technical Publishing Warsaw 1970 (in Polish).
- [38] J. Ryś, Stereology of materials, Fotobit Design, Krakow 1995 (in Polish).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ca9d7cf8-d846-43c8-baf7-02aaeaf11341