PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Applications of numerical integration in geodesy and geophysics Analysis of one-dimensional methods and presenting two-dimensional spherical splines numerical integrators using Bernstein polynomials

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, two applications of numerical integration in geodesy and geophysics are presented. In the frst application, the Molodenskij truncation coefcients for the Abel-Poisson kernel are computed using eleven diferent numerical integration procedures, namely two-, three-, four-, and fve-point Gaussian, Gauss–Kronrod, trapezoidal rule, Simpson and its adaptive mode, Romberg, Lobatto, and Sard’s approximating functional numerical integration methods. The coefcients are computed for truncation degree 90, and truncation radius 6◦. The results are then compared with an independent method for calculating these coefcients. It is shown that numerical integration methods represent better accuracy. In the second application, the gravity accelerations at sea surface in Qeshm in southern Iran are calculated using the spherical spline numerical integration method. The formulae for spherical spline numerical integration in two diferent modes weighted and without weight are derived. The special case when the weight of the integral is the so-called Stokes’ kernel is thoroughly investigated. Then, the results are used to generate gravity accelerations. First, the geoid height from the sum of the mean sea level and sea surface topography is calculated. Then, a spherical spline analytical representation—with unknown coefcients—is considered for the gravity anomaly. In the next step, using the Stokes’ formula for the integral relation between geoid height and gravity anomaly, the unknown coefcients in the previous step are calculated and subsequently the gravity anomalies are derived. Adding the gravity of the reference ellipsoid to the gravity anomalies, the actual gravity accelerations at sea surface in Qeshm are calculated. To analyze the accuracy, the derived values are compared with the values observed by shipborne gravimetry. It is shown that using Bernstein polynomials as basis function for calculating numerical integration has a better accuracy than other numerical integration methods of the same degree.
Czasopismo
Rocznik
Strony
29--45
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
  • IEEE geoscience and remote sensing member, IEEE, Tehran, Iran
Bibliografia
  • 1. Abramowitz M, Stegun IA (1972) Handbook of mathematical functions with formulas, graphs, and mathematical tables. Dover, New York
  • 2. Akhtar N, Michel V (2012) Reproducing-kernel-based splines for the regularization of the inverse ellipsoidal gravimetric problem. Applicable Anal 91:2105–2132
  • 3. Chuaning Z, Zhonglian L, Xiaoping W (1998) Truncation formulae for disturbing gravity vector. J Geodesy 72:119–123
  • 4. Davis PJ (1975) Interpolation and approximation. Courier Corporation, New York
  • 5. Ellmann M, Vanicek P (2007) UNB application of Stokes–Helmert’s approach to geoid computation. J Geodyn 43:200–213
  • 6. Freeden W (1981) On spherical spline interpolation and approximation. Math Methods Appl Sci 3:551–575
  • 7. Freeden W, Gervens T, Schreiner M (1998) Constructive approximation on the sphere. Oxford University Press, England
  • 8. Freeden W, Gutting M (2018) Integration and cubature methods: a geomathematically oriented course. Chapman and Hall, Taylor Francis Group, Boca Raton
  • 9. Heiskanen W, Moritz H (1967) Physical geodesy. Freeman corporation, San Fransisco
  • 10. Kiani M (2020a) Local geoid height interpolation and approximation using moving least squares approach. J Geodesy Geodyn 11(2):120–126
  • 11. Kiani Shahvandi M (2020b) Numerical solution of ordinary differential equations in geodetic science using adaptive Gauss numerical integration method. Acta Geodaetica et Geophysica 55:277–300
  • 12. Kiani M (2020c) Simultaneous approximation of a function and its derivatives by Sobolev polynomials: Applications in satellite geodesy and precise orbit determination for LEO CubeSats. J Geodesy Geodyn 11(5):376–390
  • 13. Kiani M (2020d) Spherical approximating and interpolating moving least squares in geodesy and geophysics: a case study for deriving gravity acceleration at sea surface in the Persian Gulf. J Geodetic Sci. https://doi.org/10.1515/jogs-2020-0112
  • 14. Kiani M (2020e) Template-based smoothing functions for data smoothing in Geodesy. J Geodesy Geodyn 11(4):300–306
  • 15. Kiani M, Chegini N, Safari A, Nazari B (2020f) Spheroidal spline interpolation and its application in geodesy. Geodesy Cartogr 46(3):123–135. https://doi.org/10.3846/gac.2020.11316
  • 16. Kiani Shahvandi M, Chegini N (2019) Ellipsoidal spline functions for gravity data interpolation and smoothing. J Earth Obs Geomat Eng 3(2):1–11
  • 17. Kiani Shahvandi M, Chegini N, Safari A, Nazari B (2020) Producing gravity acceleration at sea surface in Persian Gulf using ellipsoidal splines. jgit 8(1):63–78
  • 18. Kiani M (2020g) Comparison between compactly-supported spherical radial basis functions and interpolating moving least squares meshless interpolants for gravity data interpolation in geodesy and geophysics. arXiv:2005.08207
  • 19. Kincaid D, Cheney W (1990) Numerical analysis: mathematics of scientific computing. Cole publishing corporation, Pacific Grove
  • 20. Kreyszig E (1979) Bernstein polynomials and numerical integration. Numer Methods Eng 14:292–295
  • 21. Laurie DP (1990) Calculation of the Gauss-Kronrod quadrature rules. Mathe Comput 66:1133–1145
  • 22. Paul MK (1973) A method of evaluating the truncation error coefficients of geoidal height. Bull Geod 110:413–425
  • 23. Paul MK (1983) Recurrence relations for the truncation error coefficients for the extended Stokes function. Bull Geod 57:152–166
  • 24. Safari A, Sharifi MA, Amin H, Foroughi I (2014) Gravity acceleration at the sea surface derived from satellite altimetry data using harmonic splines. J Earth Space Phys 40:35–46
  • 25. Sjoberg LE, Shirazian M (2012) Solving the direct and inverse geodetic problems on the ellipsoid by numerical integration. J Surv Eng 138:9–17
  • 26. Vanicek P, Kleusberg A, Chang RG, Fashir H, Christou N, Hofmann M, Kling T, Arsenault T (1987) The Canadian geoid. UNB technical report, No, p 129
  • 27. Wahba G (1981) Spline interpolation and smoothing on the sphere. Soc Ind Appl Math 2:5–16
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ca9964f4-a23e-4f52-8a04-5ab9ad0fd39b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.