Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A J-frame is a frame F for a Krein space (H, [•,•] ) which is compatible with the indefinite inner product [•,•] in the sense that it induces an indefinite reconstruction formula that resembles those produced by orthonormal bases in H. With every J-frame the so-called J-frame operator is associated, which is a self-adjoint operator in the Krein space H. The J-frame operator plays an essential role in the indefinite reconstruction formula. In this paper we characterize the class of J-frame operators in a Krein space by a 2 x 2 block operator representation. The J-frame bounds of F are then recovered as the suprema and infima of the numerical ranges of some uniformly positive operators which are build from the entries of the 2x2 block representation. Moreover, this 2x2 block representation is utilized to obtain enclosures for the spectrum of J-frame operators, which finally leads to the construction of a square root. This square root allows a complete description of all J-frames associated with a given J-frame operator.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
623--649
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
autor
- Facultad de Ingenieria, Universidad de Buenos Aires Paseo Colon 850, (1063) Buenos Aires, Argentina
- Instituto Argentino de Matematica "Alberto P. Calderón" (CONICET) Saavedra 15, Piso 3, (1083) Buenos Aires, Argentina
autor
- University of Strathclyde Department of Mathematics and Statistics 26 Richmond Street, Glasgow Gl 1XH, United Kingdom
autor
- Technische Universitat Ilmenau Institut fur Mathematik Postfach 100565, D-98684 Ilmenau, Germany
autor
- Facultad de Ingenieria, Universidad de Buenos Aires Paseo Colon 850, (1063) Buenos Aires, Argentina
- Instituto Argentino de Matematica "Alberto P. Calderón" (CONICET) Saavedra 15, Piso 3, (1083) Buenos Aires, Argentina
autor
- Centro de Matematica de La Plata (CeMaLP), Facultad de Ciencias Exactas Universidad Nacional de La Plata, C.C. 172, (1900) La Plata, Argentina
- Instituto Argentino de Matematica "Alberto P. Calderón" (CONICET) Saavedra 15, Piso 3, (1083) Buenos Aires, Argentina
autor
- Instituto Argentino de Matematica "Alberto P. Calderón" (CONICET) Saavedra 15, Piso 3, (1083) Buenos Aires, Argentina
- Technische Universitat Ilmenau Institut fur Mathematik Postfach 100565, D-98684 Ilmenau, Germany
Bibliografia
- [1] T. Ando, Linear Operators on Krein Spaces, Hokkaido University, Sapporo, Japan, 1979.
- [2] T.Ya. Azizov, I.S. Iokhvidov, Linear Operators in Spaces with an Indefinite Metric. John Wiley & Sons, Chichester, 1989.
- [3] B.G. Bodmann, V.I. Paulsen, Frames, graphs and erasures, Linear Algebra Appl. 404 (2005), 118-146.
- [4] J. Bognar, Indefinite Inner Product Spaces, Springer-Verlag, Berlin-Heidelberg-New York, 1974.
- [5] Y. Bolshakov, C.V.M. van der Mee, A.CM. Ran, B. Reichstein, L. Rodman, Polar decompositions in finite-dimensional indefinite scalar product spaces: general theory, Linear Algebra Appl. 261 (1997), 91-141.
- [6] P.G. Casazza, The art of frame theory, Taiwanese J. Math. 4 (2000), 129-201.
- [7] P.G. Casazza, G. Kutyniok, Finite Frames: Theory and Applications, Applied and Numerical Harmonic Analysis, Birkhauser, New York, 2013.
- [8] O. Christensen, An Introduction to Frames and Riesz Bases, Applied and Numerical Harmonic Analysis, Birkhauser, Boston, 2003.
- [9] J.B. Conway, A Course in Functional Analysis, Graduate Texts in Mathematics 96, Springer-Verlag, New York, 1985.
- [10] G. Córach, M. Pacheco, D. Stojanoff, Geometry of epimorphisms and frames, Proc. Amer. Math. Soc. 132 (2004), 2039-2049.
- [11] M. Dritschel, J. Rovnyak, Operators on Indefinite Inner Product Spaces, Lectures on operator theory and its applications (Waterloo, ON, 1994), 141-232, Fields Inst. Monogr., 3, Amer. Math. Soc, Providence, RI, 1996.
- [12] K. Esmeral, O. Ferrer, E. Wagner, Frames in Krein spaces arising from a non-regular W-metric, Banach J. Math. Anal. 9 (2015), 1-16.
- [13] J.I. Giribet, A. Maestripieri, F. Martinez Peria, P.G. Massey, On frames for Krein spaces, J. Math. Anal. Appl. 393 (2012), 122-137.
- [14] Sk.M. Hossein, S. Karmakar, K. Paul, Tight J-Frames on Krein space and the associated J-frame potential, International J. Math. Anal. 10 (2016), 917-931.
- [15] D. Han, D.R. Larson, Frames, Bases and Group Representations, Mem. Amer. Math. Soc, vol. 147, no. 697, Providence, Rhode Island, 2000.
- [16] R.B. Holmes, V.I. Paulsen, Optimal frames for erasures, Linear Algebra Appl. 377 (2004), 31-51.
- [17] M.G. Krein, Introduction to the geometry of indefinite J-spaces and to the theory of operators in those spaces, Amer. Math. Soc. Transl. 93 (1970), 103-176.
- [18] M. Langer, Spectral functions of definitizable operators in Krein spaces, [in:] Functional Analysis (Dubrovnik, 1981), Lecture Notes in Math., vol. 948, Springer, Berlin-New York, 1982, pp. 1-46.
- [19] H. Langer, M. Langer, A. Markus, C. Tretter, Spectrum of definite type of self-adjoint operators in Krein spaces, Linear Multilinear Algebra 53 (2005), 115-136.
- [20] C.V.M. van der Mee, A.CM. Ran, L. Rodman, Stability of self-adjoint square roots and polar decompositions in indefinite scalar product spaces, Linear Algebra Appl. 302—303 (1999), 77-104.
- [21] C.V.M. van der Mee, A.CM. Ran, L. Rodman, Polar decompositions and related classes of operators in spaces IlK, Integral Equations Operator Theory 44 (2002), 50-70.
- [22] C. Mehl, A.CM. Ran, L. Rodman, Polar Decompositions of Normal Operators in Indefinite Inner Product Spaces, [in:] Operator Theory in Krein Spaces and Nonlinear Eigenvalue Problems, Oper. Theory Adv. Appl., vol. 162, Birkhauser, Basel, 2006, pp. 277-292.
- [23] I. Peng, S. Waldron, Signed frames and Hadamard products of Gram matrices, Linear Algebra Appl. 347 (2002), 131-157.
- [24] H. Radjavi, P. Rosenthal, Invariant Subspaces, Dover Publications Inc., New York, 2003.
- [25] J. Rovnyak, Methods of Krein space operator theory, [in:] Interpolation Theory, Systems Theory and Related Topics (Tel Aviv/Rehovot, 1999), Oper. Theory Adv. Appl., vol. 134, Birkhauser, Basel, 2002, pp. 31-66.
- [26] T. Strohmer, R.W. Heath Jr., Grassmannian frames with applications to coding and communications, Appl. Comput. Harmon. Anal. 14 (2003), 257-275.
- [27] C. Tretter, Spectral Theory of Block Operator Matrices and Applications, Imperial College Press, London, 2008.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ca96dc13-e510-489a-a547-548208ffcbd2