PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of integrated UFCW-MFC reactor for azo dye wastewater treatment and simultaneous bioelectricity generation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An up-flow constructed wetland (UFCW) incorporating a novel membrane-less air-cathode single-chamber microbial fuel cell (MFC) was designed to treat dye wastewater and simultaneously generate bioelectricity. The performance of UFCW-MFC was evaluated via Methyl Orange (MO) and chemical oxygen demand (COD) removal rates and the output voltage. For comparison, the performance of a single UFCW was also assessed. A repeatable and stable voltage output of about 0.44±0.2 V was obtained in UFCW-MFC. The MO and COD removal rates in UFCW-MFC were 93.5 and 57.2%, respectively, significantly higher than those in single UFCW (75.4 and 42.6%, respectively), suggesting the obvious enhancement of electrodes on MO and COD removal. The anode zone of UFCW-MFC made the most contribution to MO and COD removal compared with other layers. The oxidation-reduction potential (ORP) and dissolved oxygen (DO) profiles showed that the anaerobic environment was well developed in the lower part of UFCW-MFC (0–24 cm) and the upper part (41–42 cm) had a good aerobic environment, thus greatly contributing to the MO anaerobic reduction and aerobic degradation of breakdown products. These results obtained here suggest that the UFCW-MFC may provide an effective alternative for the treatment of dye wastewater and simultaneous bioelectricity generation.
Rocznik
Strony
63--72
Opis fizyczny
Bibliogr. 25 poz., tab., rys.
Twórcy
autor
  • Department of Resource and Environment, Anhui Science and Technology University, Fengyang 233100, Anhui, China
autor
  • Department of Resource and Environment, Anhui Science and Technology University, Fengyang 233100, Anhui, China
autor
  • Department of Resource and Environment, Anhui Science and Technology University, Fengyang 233100, Anhui, China
Bibliografia
  • [1] POPLI S., PATEL U.D., Destruction of azo dyes by anaerobic-aerobic sequential biological treatment. A review, Int. J. Environ. Sci. Technol., 2015, 12 (1), 405.
  • [2] THUNG W., ONG S., HO L., WONG Y., RIDWAN F., LEHL H.K., OON Y., OON Y., Biodegradation of Acid Orange 7 in a combined anaerobic-aerobic up-flow membrane-less microbial fuel cell. Mechanism of biodegradation and electron transfer, Chem. Eng. J., 2018, 336, 397.
  • [3] SHABBIR S., FAHEEM M., ALI N., KERR P.G., WU Y., Evaluating role of immobilized periphyton in bioremediation of azo dye amaranth, Biores. Technol., 2017, 225, 395.
  • [4] SREELATHA S., VELVIZHI G., NARESH KUMAR A., VENKATA MOHAN S., Functional behavior of bio-electrochemical treatment system with increasing azo dye concentrations: Synergistic interactions of biocatalyst and electrode assembly, Biores. Technol., 2016, 213, 11.
  • [5] LAU Y.Y., WONG Y.S., TENG T.T., MORAD N., RAFATULLAH M., Coagulation-flocculation of azo dye Acid Orange 7 with green refined laterite soil, Chem. Eng. J., 2014, 246 (15), 383.
  • [6] CASTRO F.D., BASSIN J.P., DEZOTTI M., Treatment of a simulated textile wastewater containing the Reactive Orange 16 azo dye by a combination of ozonation and moving-bed biofilm reactor. Evaluating the performance, toxicity, and oxidation by-products, Environ. Sci. Poll. Res., 2017, 24 (7), 6307.
  • [7] ANJANEYA O., SHRISHAILNATH S.S., GURUPRASAD K., NAYAK A.S., MASHETTY S.B., Decolourization of Amaranth Dye by bacterial biofilm in batch and continuous packed bed bioreactor, Int. Biodeter. Biodegr., 2013, 79, 64.
  • [8] NARAYANAN K.B., SAKTHIVEL N., Biological synthesis of metal nanoparticles by microbes, Adv. Coll. Int., 2010, 156 (1–2), 1.
  • [9] OLLER I., MALATO S., SÁNCHEZ-PÉREZ J.A., Combination of advanced oxidation processes and biological treatments for wastewater decontamination.A review, Sci. Total Environ., 2011, 409 (20), 4141.
  • [10] DOHERTY L., ZHAO Y.Q., ZHAO X.H., HU Y.S., HAO X.D., XU L., LIU R.B., A review of a recently emerged technology: constructed wetland-microbial fuel cells, Water Res., 2015, 85, 38.
  • [11] MATAMOROS V., RODRÍGUEZ Y., BAYONA J.M., Mitigation of emerging contaminants by full-scale horizontal flow constructed wetlands fed with secondary treated wastewater, Ecol. Eng., 2017, 99, 222.
  • [12] CHOULER J., CRUZ-IZQUIERDO Á., RENGARAJ S., SCOTT J.L., DI LORENZO M., A screen-printed paper microbial fuel cell biosensor for detection of toxic compounds in water, Biosen. Bioel., 2018, 102, 49.
  • [13] MOHANAKRISHNA G., ABU-REESH I.M., AL-RAOUSH R.I., HE Z., MOHANAKRISHNA G., Cylindrical graphite based microbial fuel cell for the treatment of industrial wastewaters and bioenergy generation, Biores. Technol., 2018, 247, 753.
  • [14] LIU S., SONG H., WEI S., YANG F., LI X., Bio-cathode materials evaluation and configuration optimization for power output of vertical subsurface flow constructed wetland.Microbial fuel cell systems, Biores. Technol., 2014, 166, 575.
  • [15] ZHAO Y., COLLUM S., PHELAN M., GOODBODY T., DOHERTY L., HU Y., Preliminary investigation of constructed wetland incorporating microbial fuel cell: batch and continuous flow trials, Chem. Eng. J., 2013, 229, 364.
  • [16] DANIEL D.K., DAS MANKIDY B., AMBARISH K., MANOGARI R., Construction and operation of a microbial fuel cell for electricity generation from wastewater, Int. J. Hyd. Energ., 2009, 34 (17), 7555.
  • [17] THUNG W., ONG S., HO L., WONG Y., RIDWAN F., OON Y., OON Y., LEHL H.K., A highly efficient single chambered up-flow membrane-less microbial fuel cell for treatment of azo dye Acid Orange 7-containing wastewater, Biores. Technol., 2015, 197, 284.
  • [18] VILLASENOR J., CAPILLA P., RODRIGO M.A., CANIZARES P., FERNANDEZ F.J., Operation of a horizontal subsurface flow constructed wetland-microbial fuel cell treating wastewater under different organic loading rates, Water Res., 2013, 47 (17), 6731.
  • [19] FANG Z., SONG H., YU R., LI X., A microbial fuel cell-coupled constructed wetland promotes degradation of azo dye decolorization products, Ecol. Eng., 2016, 94, 455.
  • [20] FANG Z., SONG H., CANG N., LI X., Performance of microbial fuel cell coupled constructed wetland system for decolorization of azo dye and bioelectricity generation, Biores. Technol., 2013, 144, 165.
  • [21] LI Z., ZHANG X., LIN J., HAN S., LEI L., Azo dye treatment with simultaneous electricity production in an anaerobic-aerobic sequential reactor and microbial fuel cell coupled system, Biores. Technol., 2010, 101 (12), 4440.
  • [22] MURALI V., ONG S., HO L., WONG Y., Evaluation of integrated anaerobic-aerobic biofilm reactor for degradation of azo dye methyl orange, Biores. Technol., 2013, 143, 104.
  • [23] OON Y., ONG S., HO L., WONG Y., OON Y., LEHL H.K., THUNG W., Hybrid system up-flow constructed wetland integrated with microbial fuel cell for simultaneous wastewater treatment and electricity generation, Biores. Technol., 2015, 186, 270.
  • [24] SUN J., BI Z., HOU B., CAO Y., HU Y., Further treatment of decolorization liquid of azo dye coupled with increased power production using microbial fuel cell equipped with an aerobic biocathode, Water Res., 2011, 45 (1), 283.
  • [25] PANDA N., SAHOO H., MOHAPATRA S., Decolourization of Methyl Orange using Fenton-like mesoporous Fe2O3-SiO2 composite, J. Hazard. Mater., 2011, 185 (1), 359
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ca95a8cf-06ff-4918-9cda-823bacd6e91d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.