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Abstract: In this paper we present the results of simulations of the Magnetic Induction 
Tomography (MIT) forward problem. Two complementary calculation techniques have 
been implemented and coupled, namely: the finite element method (applied in com-
mercial software Comsol Multiphysics) and the second, algebraic manipulations on basic 
relationships of electromagnetism in Matlab. The developed combination saves a lot of 
time and makes a better use of the available computer resources. 
Key words: boundary conditions, eddy current testing, finite element method, magnetic 
induction tomography. 

 
 
 

1. Introduction 
 
 The Magnetic Induction Tomography (MIT) system has been developed and constructed at 
the West Pomeranian University of Technology, Szczecin for the inspection of low conduc-
tivity objects. Such objects can usually contain inclusions of different electromagnetic pro-
perties, i.e.: electrical conductivity σ (usually a few S/m), electrical permittivity ε [F/m] and 
magnetic permeability μ [H/m].  
 One of the highly promising MIT application is a biomedical diagnosis, because electrical 
properties of biological tissues are known to be sensitive to their physiological and patho-
logical conditions. For example, it has been reported in the literature (see Table 1) that can-
cerous tissue has a meaningfully higher electrical conductivity than the surrounding tissues. 
Differences in electromagnetic properties values between various types of tissues (e.g. healthy 
and cancerous cells) are much more significant in comparison to other parameters, such as, for 
example density. 
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Table 1. The electric properties of normal and cancerous human hepatic tissue 

Conductivity σ 
[mS/m] Relative permittivity εr ωε [mS/m] Loss tangent 

tgδ Ref. Freq. 
[kHz] Normal Tumor Normal Tumor Normal Tumor Norm Tumor  

50 ± 22 296 ± 123 (47 ± 15)·103 (50 ± 15)·103 26.1 ±8.3 27.8 ± 8.3 1.91 10.65 [7] 10.00 
10.00 42 ± 10 181 ± 80 (35 ± 8)·103 (34 ± 10)·103 19.4 ±4.5 18.9 ± 5.6 2.16 9.58 [8] 
10.00 53.5 – 28.9·103 – 16 – 3.33 – [11] 

47 ± 10 185 ± 80 (28 ± 7)·103 (25 ± 7)·103 24.3 ±6.1 21.7 ± 6.1 1.93 8.52 [9, 10] 15.63 
15.63 58.0 – 21.7·103 – 18.8 – 3.07 – [11] 
31.25 58 ± 20 195 ± 70 (20 ± 5)·103 (16 ± 5)·103 34.7 ±8.7 27.8 ± 8.6 1.67 7.01 [9, 10] 
31.25 65.9 – 14.0·103 – 24.3 – 2.71 – [11] 
65.10 76 ± 20 209 ± 70 (13 ± 3)·103 (10 ± 3)·103 47.1 ±1.1 36.1 ± 10.9 1.61 5.78 [9, 10] 
97.66  91 ± 20 222 ± 70 (11 ± 2)·10 (8.6 ± 2)·103 59.7 ±1.1 46.7 ± 10.9 1.52 4.75 [9, 10] 
100.0 109 ± 34 347 ± 126 (13 ± 3.8)·103 (9.4±3.8)·103 72.3 ±21.1 52.3 ± 21.1 1.51 6.63 [7] 
150.0 95.4 – 6.09·103 – 50.8 – 1.88 – [11] 
195.3 124 ± 30 246 ± 70 (6.5 ± 1)·103 (5.1 ± 1)·103 70.5 ±10.8 55.3 ± 10.9 1.76 4.45 [9-11] 
200.0 105 – 5.20·103 – 57.8 – 1.82 – [11] 
300.0 122 – 4.03·103 – 67.2 – 1.81 – [11] 
390.6 164 ± 30 272 ± 70 (3.4 ± 0.5)·103 (3 ± 0.6)·103 73.8 ±10.9 65.2 ± 13.0 2.22 4.17 [9, 10] 
400.0 190 ± 56 399 ± 130 (4.5 ± 1.1)·103 (3.2±1.6)·103 100 ±24.5 71.1 ± 35.6 1.90 5.61 [7] 

 
 

2. The principle of the measuring system 
 
 The MIT system consists of two main elements, which are usually placed coaxially to each 
other, i.e.: a magnetic field exciter (ferrite core coil with an aluminium screen [4]) and a re-
ceiver (two differentially connected air core coils). The object under test is situated between 
them and during the measurements moves along the selected direction (Fig. 1). The remaining 
components of the system (signal generator with a high speed amplifier, control unit, data 
acquisition unit and a positioning system), though important, are not considered in the simu-
lations. 
 

 
Fig. 1. Magnetic Induction Tomography system with a rectangular shaped object and an inclusion. The 

exciter and coaxial signal coils are coupled together and moves along the surface of the object 
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 The exciter’s coil is supplied by a low frequency sinusoidal current (of the order of tens of 
kilohertz)  with an amplitude of tens of milliamperes and generates a time varying magnetic 
field, of the same frequency, described by magnetic flux density Bp and magnetic vector po-
tential Ap. This field, called the primary magnetic field, excites eddy currents in the conduc-
ting object. The amplitudes and spatial distribution of eddy currents vary depending on con-
ductivities and shapes of the object and inclusions. Eddy currents create their own magnetic 
field, called the secondary field, which is described by magnetic flux density Bs. The main aim 
of the measuring MIT system is to acquire the secondary magnetic field changes resulting 
from non-uniform electrical conductivity distribution in the object. The results of the secon-
dary field measurements have been presented previously [3, 4]. 
 The numerical modelling of such a process is commonly called the “forward problem”. 
Next, the so called “inverse problem” takes places, i.e. reconstruction of the conductivity dis-
tribution based on the secondary magnetic field measurements. 
 
 

3. Numerical model of the MIT system 
 
 The continuity equation for current density J varying sinusoidally with radial frequency ω, 
is given by: 

  pωj−=⋅∇ J , (1) 

where ρ is the charge density and the letter j denotes the imaginary unit. Substituting in this 
equation: from Ohm’s law – conductivity σ multiplied by electric field vector E instead of 
current density (J = σE), from Gauss’s law – the divergence of electric displacement D in-
stead of volume charge density ρ (∇⋅D = ρ) and using the relationship between displacement 
field D and electric field )  = ( EDE ε , one can obtain the equation: 

  ( )[ ] 0j =+⋅∇ Eωεσ . (2) 

 In a linear isotropic nonmagnetic conductive medium the electric field can be expressed in 
terms of magnetic vector potential A and electric scalar potential Φ. For sinusoidally varying 
electromagnetic fields it can be written as: 

  Φ∇−−= AE ωj , (3) 

 From (2) and (3), if Coulomb’s gauge 0=⋅∇ A  is adopted, one can obtain: 

  ( )[ ] )j(jj ωεσωωεσ +∇⋅−=∇+⋅∇ AΦ . (4) 

 On the internal boundary between two different materials of parameters (σ1, ε1) and 
(σ2, ε2), the continuity condition for the electric field vectors is: 

  ( ) nn EE 222111 j)j( ωεσωεσ +=+ , (5) 
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where index n denotes the normal component of the vector. In the following, we will consider 
situations where the displacement current is negligible compared to the conduction current. It 
means that ωε n σ. This assumption is usually satisfied in most practical applications. In that 
case using (3), the reformulated problem (4)-(5) appears as: 

  σωσ ∇⋅−=∇⋅∇ Aj)( Φ , (6) 
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 The boundary condition on the object external boundaries one can obtain assuming σ2 = 0, 
and taking σ and Φ in place of σ1 and Φ1: 

  nA
n
Φ ωσσ j−=
∂
∂ . (8) 

 The above partial differential equation and boundary conditions (6-8) describe general 
electromagnetic relations in the MIT system. There are two unknowns, namely: magnetic 
vector potential A and electric scalar potential Φ, which are in general both complex. The 
problem of solving the equations can be greatly simplified by the assumption that the primary 
magnetic vector potential Ap coming from the exciter is not disturbed by the object of low 
conductivity. The validity of this assumption for low frequencies, i.e. frequencies of the order 
of tens of kHz, is shown in [6]. The primary magnetic field can be calculated for a given 
exciter independently of the object parameters, and then pAA = can be considered as a known 
value in Equations (6-8).  
 Another simplification can be done by decomposing complex electric scalar potential Φ 
into real and imaginary parts )j( ir ΦΦΦ += . It was also shown in [6] that the real part of the 
potential is equal to zero. Substituting jΦi into equations makes it possible to omit the j term in 
the both sides of all equations. 
 The primary magnetic vector potential Ap is the same at the interface between two different 
media, and therefore it is not necessary to use different notation for Ap on the right and left-
hand side in (7). Finally, the reformulated problem (6-8) is reduced to finding one scalar 
function Φi from the set of equations: 

  σωσ ∇⋅−=∇⋅∇ pi A)( Φ , (9) 

  )()( 2121 σσωσσ −−=⋅∇− pnii AnΦΦ , (10) 

  pni Aωσσ −=⋅∇ n)( Φ . (11) 

 
4. The method for solving the forward problem 

 
 The whole measuring system can be simulated as one unified model in any finite element 
method (FEM) software taking into account the equation formulations (6-8) for the magnetic 
vector potential A, and electric scalar potential Φ. However, in the case of complex 3D geo-
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metry such an approach requires huge computer resources (memory and time). In this paper 
we describe the alternative method which is based on dividing the above complex computation 
process into smaller consecutive parts.  
 

 
Fig. 2. Flowchart of the calculation procedure 

 
 First, the magnetic field Ap of the exciter is computed in the axisymmetric FEM model. 
The model does not contain the object, only the exciter. It is composed of the exciting coil of  
a rectangular cross section together with a ferromagnetic core and a conducting screen that 
have a slightly more complex shape. Because of the symmetry, there is only one component 
Aφ(r, φ) of the magnetic vector potential, which has to be found from the equation:  

  ( ) ( ) eprr JA =×∇+− −− B11
00

2j μμεεωωσ ϕ , (12) 

where Je is the current density in the exciter coil, σ is the conductivity of the screen, μr and μ0 
are the relative permeability of the core and the permeability of the vacuum. Asymptotic 
boundary conditions [5] adopted at the outer boundary of the model and 2D space of cal-
culation enable to use extremely fine mesh and obtain accurate values of the field in a limited 
space. The calculated values of the magnetic field are converted into the Cartesian coordinate 
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system. They are saved and then can be used for succeeding calculation with any object, and 
with various receivers.  
 In the second step, from the values of the primary magnetic field and parameters of the 
object and inclusions (conductivities, positions and shapes), right hand side of Eq. (9) and 
boundary conditions at the edges of the object and inclusions – right hand side of Eq. (10) and 
(11) – are calculated. Next, these values are applied in the 3D FEM model (electric scalar po-
tential Φ formulation). The model contains only the object with inclusions inside. A reduced 
number of algebraic equations allows for the use of the extra fine mesh and to compute ac-
curately induced eddy currents. Finally, the secondary magnetic field and the electromotive 
force induced in receiver coils are calculated.  
 The second step can be repeated for different positions of the exciter. Moreover, cal-
culation of voltages induced in the receiver coils can be done for various parameters of 
receivers. Both first and second steps of the calculations are made in smaller parts in Matlab 
and Comsol – see Fig 2 for details.  
 
 

5. Equations in Comsol Multiphysics 
 

 The set of Equations (9-11) – partial differential equation and boundary conditions – has 
the form typical for electrostatics problems. This kind of problems can be solved by any com-
mercial software. The software used in this work is Comsol Multiphysics. In AC/DC, 3D 
Electrostatics Module in this program one can find the following equations for domain and 
boundaries:  
Space Charge Density (domain) 

  νρ=⋅∇ D , (13) 

Surface Charge Density (interior boundary) 

  sρ=⋅− nDD )( 21 , (14) 

Surface Charge Density (exterior boundary) 

  sρ=⋅− Dn , (15) 

which can also be expressed in the forms similar to Equations (9-11): 

  νρεε −=∇⋅∇ )( 0 Vr , (13a) 

  srr VV ρεεεε −=⋅∇−∇ n)( 2010  (14a) 

  sr V ρεε =∇⋅ )( 0n . (15a) 

 It can be seen that in (13a-15a) the term ε0εr is equivalent to conductivity σ in (9-11) and V 
is the imaginary part of the electric scalar potential. The right hand side of both sets of 
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equations are functions of space and are known coefficients in all equations. After solving the 
problem, induced eddy currents can be calculated from the formula: 

  rpV εεω 0)(j AJ +∇−= , (16) 

and the secondary magnetic field can be calculated from the Biot-Savart law. 
 
 

6. Results of simulations 
 
 The validity of the model was examined using several examples. The first example is  
a conductive object (of size 0.12 × 1.19 × 0.2 m in x, y and z axis respectively and conduc-
tivity σ = 0.145 S/m) with a nonconductive inclusion (a cube with a 2 cm edge). The model 
was solved with the procedure described above, for 651 positions of the exciter (31 × 21 
points in y0z0-plane, in which the exciter axis was placed – see Fig. 1). For every position of 
the exciter, eddy currents induced in the object were calculated from the FEM solution in 
228480 evenly spaced points (the object is divided into cubes with a uniform current density). 
Figures 3-5 present components of induced current density in the YZ plane (part of the cross-
section of the object, shown in Fig. 1). The component parallel to the exciter axis (Jx) exists 
only in close proximity of the inclusion or of the object boundary (the upper edge of each 
figure coincides with the boundary of the object). 
 Other components are continuous throughout the object, except the place where the inclu-
sion is. It can be seen that the current flows around the inclusion and preserves continuity. 
 

 
Fig. 3. Jx component of eddy currents density (mA/m2) in the object with non-conductive inclusion 

 

 
Fig. 4. Jy component of eddy currents density (mA/m2) induced in the object  

with non-conductive inclusion 
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Fig. 5. Jz component of eddy currents density (mA/m2) induced in the object  

with non-conductive inclusion 
 

 
Fig. 6. Absolute value of eddy currents density (mA/m2) induced in the object 

 with non-conductive inclusion 
 

 
Fig. 7. Differential voltages U (mV) calculated for 651 positions (in y0z0-plane) of the exciter  

and receivers. The inclusion is placed at x = 0.02, y = 0.05, z = 0.02 
 

 Figure 6 presents the absolute value of the current density. Positions of the inclusion and 
the exciter axis can be seen very clearly. Figure 7 presents voltages calculated for every po-
sition of the exciter and receivers, for two differentially connected signal coils, as shown in 
Fig. 1. Although the inclusion is separated from the receiver by a relatively thick layer of  
a homogenous conductive object, it can be seen a signal produced by the inclusion. 
 Another example is an object with conductivity equal to the conductivity of a liver with  
a conductive inclusion inside. The liver is the biggest viscus in a human organism. Physio-
logically, about 75% of the livers blood supply comes from the portal vein, others − from the 
hepatic artery. Cancer cells are usually fed by branches of the hepatic artery. Hepatic tumors, 
benign and malignant, are richly vascularised and supplied with blood. It is estimated that the 
frequency of angiomas in the liver is 2-5% in general population and they are masses of 
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abnormal blood vessels. Angiomas, adenomas and others benign tumors could undergo to 
malignant transformation and cause haemorrhage. In the sonography it is extremely difficult to 
indentify small focal lesions in the liver. MIT can be employed in the detection of proliferative 
changes in the early stages. In medical imaging MIT is based on a higher value of electrical 
conductivity of blood, compared with most tissues. Eddy currents induced in the 3D hetero-
geneous model of an abdominal haemorrhage are shown in the Fig. 8, where the blood is the 
inclusion and the healthy tissue of the liver is the object. Slices are 1 mm and 1.5 mm away 
from the inclusion. In the top left corner of the figure induced current density is shown on  
a slice through the middle of the inclusion. It can be seen that induced currents are about six 
times bigger in the inclusion. 
 Table 2 presents the calculation time and physical memory usage, when computing the 
same object with different mesh parameters in two models: a full model of the MIT system 
and a reduced one. The reduced model consists only of the object and one inclusion and is 
solved only for the electric scalar potential (Eq. 9-11). The full model also includes the exciter 
and some space around, and is solved for both the electric scalar potential and the magnetic 
vector potential (Eq. 6-8). The calculation results are the same, but the number of degrees of 
freedom (NDF), the solution time and the physical memory usage are very different. In the 
most interesting case, for the finest mesh with the maximum element size in the object set to 
6 mm in the domains and 2 mm on the boundaries, it was not possible to obtain the solution 
because of lack of memory.  
 

 
Fig. 8. Absolute value of eddy currents density (A/m2) induced in the object (σ = 0.05 S/m)  

with inclusion of conductivity σ = 0.30 S/m 
 

Table 2. The comparison of the calculation time and memory usage 

Maximum element 
size NDF solution time RAM used 

domains boundaries full model reduced model full model reduced model full model reduced model 
18 mm 6 mm 6053822 604825 34 min 70 s 29 GB 2.23 GB 
12 mm 4 mm 13124483 1534537 65 min 121 s 60 GB 3.39 GB 
6 mm 2 mm 58076408 7864656 n.a. 508 s 96 GB* 13.0 GB 

* 96 GB is the total physical memory installed on the computer 
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7. Conclusions 
 
 The procedure for solving the forward problem for Magnetic Induction Tomography and 
simulation results that confirm the validity of the procedure were presented. The procedure is 
fast compared to traditional methods, it uses much less memory and can be used in designing 
similar measuring systems. 
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