Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents a three-phase grid-tied converter operated under unbalanced and distorted grid voltage conditions, using a multi-oscillatory current controller to provide high quality phase currents. The aim of this study is to introduce a systematic design of the current control loop. A distinctive feature of the proposed method is that the designer needs to define the required response and the disturbance characteristic, rather than usually unintuitive coefficients of controllers. Most common approach to tuning a state-feedback controller use linear-quadratic regulator (LQR) technique or pole-placement method. The tuning process for those methods usually comes down to guessing several parameters. For more complex systems including multi-oscillatory terms, control system tuning is unintuitive and cannot be effectively done by trial and error method. This paper proposes particle swarm optimization to find the optimal weights in a cost function for the LQR procedure. Complete settings for optimization procedure and numerical model are presented. Our goal here is to demonstrate an original design workflow. The proposed method has been verified in experimental study at a 10 kW laboratory setup.
Rocznik
Tom
Strony
389--398
Opis fizyczny
Bibliogr. 52 poz., rys., tab.
Twórcy
autor
- Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
autor
- Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
autor
- Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
autor
- Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
autor
- Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
Bibliografia
- [1] M. Malinowski, M. Jasiński, and M.P. Kaźmierkowski, “Simple direct power control of three-phase PWM rectifier using space-vector modulation (DPC-SVM)”, IEEE Trans. Ind. Electron. 51 (2), 447–454, (2003).
- [2] M. Bobrowska-Rafal, K. Rafal, G. Abad, and M. Jasinski, “Control of PWM rectifier under grid voltage dips”, Bull. Pol. Ac.: Tech. 57 (4), 337–343 (2009).
- [3] M. Liserre, R. Teodorescu, and F. Blaabjerg, “Multiple harmonics control for three-phase grid converter systems with the use of PI-RES”, IEEE Trans. Pow. Electron. 21 (3), 836–841 (2006).
- [4] R. Teodorescu, M. Liserre, and P. Rodriguez, Grid converter for photovoltaic and wind power systems, John Wiley & Sons, New York, 2011.
- [5] M. Jasiński, G. Wrona, and Sz. Piasecki, “Control of Grid Connected Converter (GCC) Under Grid Voltage Disturbances”, Advanced and Intelligent Control in Power Electronics and Drives, 91–142 (2014).
- [6] K. Jackiewicz, A. Stras, B. Ufnalski, and L.M. Grzesiak, “Comparative study of two repetitive process control techniques for a grid-tie converter under distorted grid voltage conditions”, Int. J. Electr. Power Energy Syst. 113, 64–175 (2019).
- [7] D. Zieliński, P. Lipnicki, and W. Jarzyna, “Synchronization of voltage frequency converters with the grid in the presence of notching”, COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering 34 (3), 657–673 (2015).
- [8] CENELEC: European Committee for Electrotechnical Standardization, “Voltage Characteristics of Public Distribution System”, Brussels, Belgium, 1999.
- [9] Intern. Electrotechnical Commission, “IEC 61000-3-2 Electromagnetic Compatibility (EMC) – Part 3-2: Limits for Harmonic current Emissions (Equipment Input Current ≤ 16 A per phase”, Geneva, Switzerland, 2018.
- [10] Intern. Electrotechnical Commission, “IEC 61000-3-12 Electromagnetic Compatibility (EMC)–Part 3-12: Limits for Harmonic current Emissions (Equipment Input Current > 16 A and ≤ 75 A per phase”, Geneva, Switzerland, 2018.
- [11] D. Priyanga and N.K. Jisi, “Repetitive Controller Based Grid Current Compensator for Distributed Generation”, International Journal of Computer Science and Engineering Communications 5 (3), 1556–1565 (2017).
- [12] Q.N. Trinh, P. Wang, Y. Tang, and F.H. Choo, “Mitigation of DC and Harmonic Currents Generated by Voltage Measurement Errors and Grid Voltage Distortions in Transformerless Grid-Connected Inverters”, IEEE Trans. Energy Convers. 33 (2), 801–813 (2018).
- [13] C. Blanco, F. Tardelli, D. Reigosa, P. Zanchetta, and F. Briz, “Design of a Cooperative Voltage Harmonic Compensation Strategy for Islanded Microgrids Combining Virtual Admittance and Repetitive Controller”, IEEE Trans. Ind. Appl. 55 (1), 680–688 (2019).
- [14] B. Ufnalski, L.M. Grzesiak, A. Kaszewski, and A. Galecki, “On the similarity and challenges of multiresonant and iterative learning current controllers for grid converters and why the disturbance feedforward matters”, Przeglad Elektrotechniczny (Electrical Review) 94 (5/2018), 38–46 (2018).
- [15] G. Iwanski, T. Luszczyk, and M. Szypulski, “Virtual-Torque-Based Control of Three-Phase Rectifier Under Grid Imbalance and Harmonics”, IEEE Trans. Pow. Electron. 32 (9), 6836–6852 (2017).
- [16] G. Iwanski, “Virtual Torque and Power Control of a Three-Phase Converter Connected to an Unbalanced Grid With Consideration of Converter Current Constraint and Operation Mode”, IEEE Trans. on Power Electr. 34 (4), 3804–3818 (2019).
- [17] P. Falkowski and A. Sikorski, “Finite control set model predictive control for grid-connected AC–DC converters with LCL filter”, IEEE Trans. Ind. Electron. 65 (4), 2844–2852 (2017).
- [18] J.A. Rohten, J.R. Espinoza, J.A. Muñoz, M.A. Pérez, P.E. Melin, J.J. Silva, E.E. Espinosa, and M.E. Rivera, “Model predictive control for power converters in a distorted three-phase power supply”, IEEE Trans. Ind. Electron. 63 (9), 5838–5848 (2016).
- [19] J. Kukkola, M. Hinkkanen, and K. Zenger, “Observer-Based State-Space Current Controller for a Grid Converter Equipped With an LCL Filter: Analytical Method for Direct Discrete-Time Design”, IEEE Trans. Ind. Appl. 51 (5), 4079–4090 (2015).
- [20] C. Xie, X. Zhao, K. Ki, D. Liu, J.M. Guerrero, and J.C. Vasquez, “Phase Compensated Reduced Order Generalized Integrators for Grid-Tied VSCs With Harmonics Compensation Capability”, IEEE Trans. Ind. Appl. 54 (3), 2568–2578 (2018).
- [21] D. Pérez-Estévez, J. Doval-Gandoy, A.G. Yepes, Ó. López, and F. Baneira, “Generalized Multifrequency Current Controller for Grid-Connected Converters With LCL Filter”, IEEE Trans. Ind. Appl. 54 (5), 4537–4553 (2018).
- [22] C.A. Busada, S.G. Jorge, and J.A. Solsona, “Full-State Feedback Equivalent Controller for Active Damping in LCL-Filtered Grid-Connected Inverters Using a Reduced Number of Sensors”, IEEE Trans. Ind. Electron. 62 (10), 5993–6002 (2015).
- [23] F. Huerta Sánchez, J. Pérez, S. Cobreces Alvarez, and M. Rizo, “Frequency-Adaptive Multi-Resonant LQG State-Feedback Current Controller for LCL-Filtered VSCs under Dist. Grid Voltages”, IEEE Trans. Ind. Electron. 65 (11), 8433–8444 (2018).
- [24] K.J. Aström and R.M. Murray, Feedback systems: An Introduction For Scientists and Engineers, Princeton University Press, 2010.
- [25] M. Szypulski and G. Iwański, “Synchronization of state-feedback-controlled doubly fed induction generator with the grid”, Bull. Pol. Ac.: Tech. 66 (5), 675–685 (2018).
- [26] A. Douik, L. Hend, and H. Messaoud “Optimised Eigenstructure Assignment by Ant System And LQR Approaches.”, Int. J. Adv. Comput. Sci. Appl. 5 (4), 45–56 (2008).
- [27] T. Tarczewski and L.M. Grzesiak, “Application of artificial bee colony algorithm to auto-tuning of linear-quadratic regulator for PMSM position control”, Przeglad Elektrotechniczny (Electical review) 92 (6), 57–62 (2016).
- [28] S.A. Ghoreishi and M.A. Nekoui, “Optimal weighting matrices design for LQR controller based on genetic algorithm and PSO”, Advanced Materials Research 433, 7546–7553 (2012).
- [29] B. Ufnalski, A. Kaszewski, and L.M. Grzesiak, “Particle Swarm Optimization of the Multioscillatory LQR for a Three-Phase Four-Wire Voltage-Source Inverter With an LC Output Filter”, IEEE Trans. Ind. Electron. 62 (1), 484–493 (2015).
- [30] A. Demiroren and M. Guleryuz, “PSO algorithm-based optimal tuning of STATCOM for voltage control in a wind farm integrated system”, Int. Conf. Electr. Electron. Eng., 7th, 367–370 (2011).
- [31] A. Galecki, A. Kaszewski, B. Ufnalski, and L.M. Grzesiak, “State current controller with oscillatory terms for three-level grid-connected PWM rectifiers under distorted grid voltage conditions”, Proc. Int. Conf EPE-ECCE Europe, 1–10 (2015).
- [32] A. Gałecki, L. Grzesiak, B. Ufnalski, A. Kaszewski, and M. Michalczuk, “Anti-windup strategy for an LQ current controller with oscillatory terms for three-phase grid-tie VSCs in SMES systems”, Power Electronics and Drives 1 (2), 65–81 (2016).
- [33] A. Galecki, L. Grzesiak, B. Ufnalski, A. Kaszewski, and M. Michalczuk, “Multi-oscillatory current control with anti-windup for grid-connected VSCs operated under distorted grid voltage conditions”, Proc. Int. Conf EPE-ECCE Europe, 1–10 (2017).
- [34] A. Galecki, A. Kaszewski, L.M. Grzesiak, and B. Ufnalski, “Particle swarm optimization of the multioscillatory LQR for a three-phase grid-tie converter”, Przeglad Elektrotechniczny (Electrical Review) 94 (6/2018), 43–48 (2018).
- [35] B. Ufnalski and L.M. Grzesiak, “Plug-in direct particle swarm repetitive controller with a reduced dimensionality of a fitness landscape–a multi-swarm approach”, Bull. Pol. Ac.: Tech. 63 (4), 857–866 (2015).
- [36] B. Ufnalski, L.M. Grzesiak, and K. Gałkowski, “Particle swarm optim. of an iter. learning controller for the single-phase inverter with sinusoidal output voltage waveform”, Bull. Pol. Ac.: Tech. 61 (3), 649–660 (2013).
- [37] M. Safonov and M. Athans, “Gain and phase margin for multi-loop LQG regulators”, IEEE Trans. Autom. Control 22 (2), 173–179 (1977).
- [38] W.S. Levine, The Control Systems Handbook: Control System Advanced Methods, CRC press, 2010.
- [39] Zwe-Lee Gaing, “A particle swarm optimization approach for optimum design of PID controller in AVR system”, IEEE Trans. Energy Convers. 19 (2), 384–391 (2004).
- [40] M.P. Kaźmierkowski, R. Krishnan, and F. Blaabjerg, Control in Power Electronics, Academic Press, 2002.
- [41] Yi Fei Wang and Yun Wei Li, “Grid Synchronization PLL Based on Cascaded Delayed Signal Cancellation”, IEEE Trans. Pow. Electron. 26 (7), 1987–1997 (2011).
- [42] Y. Yang, K. Zhou, and F. Blaabjerg, “Enhancing the Frequency Adaptability of Periodic Current Controllers With a Fixed Sampling Rate for Grid-Conn. Power Conv.”, IEEE Trans. Pow. Electron. 31 (10), 7273–7285 (2016).
- [43] M.P. Kaźmierkowski, M. Jasiński, and G. Wrona, “DSP-Based Control of Grid-Connected Power Converters Operating Under Grid Distortions”, IEEE Trans. Ind. Informatics 7 (2), 204–211 (2011).
- [44] K. Zhou, Y. Yang, F. Blaabjerg, and D. Wang, “Optimal Selective Harmonic Control for Power Harmonics Mitigation”, IEEE Trans. Ind. Electron. 62 (2), 1220–1230 (2015).
- [45] Matlab, Design discrete linear-quadratic LQ regulator for continuous plant, https://www.mathworks.com/help/control/ref/lqrd.html, 2018, 2020-01-16.
- [46] T. Duriez, S.L. Brunton, and B.R. Noack, “Methods of Linear Control Theory”, Machine Learning Control – Taming Nonlinear Dynamics and Turbulence, Springer, 49–68 (2017).
- [47] B. Kedjar and K. Al-Haddad, “ LQ control of a three-phase four-wire shunt active power filter based on three-level NPC inverter”, Proc. Int. Conf. CCECE 1297–1302 (2008).
- [48] R.C. Eberhart and Yuhui Shi “Comparing inertia weights and constriction factors in particle swarm optimization”, Proc. of the IEEE Congres CEC, 1, 84–88 (2000).
- [49] M. Clerc and J. Kennedy, “The particle swarm-explosion, stability, and convergence in a multidimensional complex space”, IEEE Trans. Evol. Comput. 6 (1), 58–73 (2002).
- [50] V. Blasko, V. Kaura, and W. Niewiadomski, “Sampling of discontinuous voltage and current signals in electrical drives: a system approach”, IEEE Trans. Ind. Appl. 34 (5), 1123–1130 (1998).
- [51] M. Michalczuk, “On-line: Particle Swarm Optimization using parallel computing”, https://www.mathworks.com/ matlabcentral/profile/ authors/3157172-marek-michalczuk, 2020-01-16.
- [52] J. Dannehl, Ch. Wessels, and F.W. Fuchs, “Limitations of voltage-oriented PI current control of grid-connected PWM rectifiers with LCL filters”, IEEE Trans. Ind. Electron. 56 (2), 380–388 (2009).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ca940ee4-5c56-4b01-82eb-8e123abdb1ed