PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An innovative flotation technology for the lime-depressed pyrite recovery from copper sulphide ore via acid mine drainage (AMD) activation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, an innovative flotation technology consisted of Cu differential flotation with high alkali lime and pyrite recovery with acid mine drainage (AMD) activation was investigated for the cleaner beneficiation of the copper sulfide ore. Flotation test results showed that H2SO4 -CuSO4 and AMD could effectively activate the pyrite flotation with SBX collector. Moreover, the recovery of S concentrate is increased by 5.33% in the AMD system. Adsorption amount results of SBX collector indicated that the hydrophilic species (Ca2+, CaOH+ and FeOOH) were formed on the pyrite surfaces in the high alkali lime craft (pH=11.3) and degraded the interaction between SBX and pyrite surfaces. AMD can effectively clear off the hydrophilic calcium species and the copper ions originated from the AMD absorb onto the pyrite surfaces, facilitating the SBX collector adsorption. Composition analysis results of tailings water confirmed that the tailing water obtained by the AMD flotation system was more desirable to be recycled in the Cu differential flotation due to its higher pH value (8.7). The present study provides a novel approach for the treatment of AMD, and has the vital practical significance for the emission reduction of AMD and the increase of beneficiation profits.
Rocznik
Strony
art. no. 152609
Opis fizyczny
Bibliogr. 38 poz., rys.
Twórcy
autor
  • Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
autor
  • Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
autor
  • Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
autor
  • Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
autor
  • Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
  • Yunnan Key Laboratory of Green Separation and Enrichment of Strategic Mineral Resources, Kunming 650093, China
autor
  • Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
  • Yunnan Key Laboratory of Green Separation and Enrichment of Strategic Mineral Resources, Kunming 650093, China
Bibliografia
  • ALTINKAYA, P., LIIPO, J., KOLEHMAINEN, E., HAAPALAINEN, M., LEIKOLA, M., LUNDSTRöM, M. 2018. Leaching of Trace Amounts of Metals from Flotation Tailings in Cupric Chloride Solutions. Mining, Metallurgy & Exploration, 36(2), 335-342
  • BAI, S., BI, Y., LI, J., YU, P., DING, Z., LV, C., WEN, S. 2021. Innovative utilization of acid mine drainage (AMD): A promising activator for pyrite flotation once depressed in a high alkali solution (HAS)–Gearing towards a cleaner production concept of copper sulfide ore. Minerals Engineering, 170, 106997
  • BOULTON, A., FORNASIERO, D., RALSTON, J. 2003. Characterisation of sphalerite and pyrite flotation samples by XPS and ToF-SIMS. International Journal of Mineral Processing, 70(1-4), 205-219
  • CHANDRA, A.P., GERSON, A.R. 2009. A review of the fundamental studies of the copper activation mechanisms for selective flotation of the sulfide minerals, sphalerite and pyrite. Advances in Colloid and Interface Science, 145(1-2),97-110.
  • CRUNDWELL, F.K. 2021. The impact of light on understanding the mechanism of dissolution and leaching of sphalerite(ZnS), pyrite (FeS2) and chalcopyrite (CuFeS2). Minerals Engineering, 161, 106728.
  • DENG, Z., CHENG, W., TANG, Y., TONG, X., LIU, Z. 2021. Adsorption mechanism of copper xanthate on pyritesurfaces. Physicochemical Problems of Mineral Processing, 57(3), 46-60.
  • HOLMES, P.R., CRUNDWELL, F.K. 2000. The kinetics of the oxidation of pyrite by ferric ions and dissolved oxygen Anelectrochemical study. Geochimica et Cosmochimica Acta, 64(2), 263-274.
  • HU, Y.H., ZHANG, S.L., QIU, G.Z., MILLER, J.D. 2000. Surface chemistry of activation of lime-depressed pyrite inflotation. Transactions of Nonferrous Metals Society of China, 10(6), 798-803.
  • HUANG, H., HU, Y., SUN, W. 2012. Activation flotation and mechanism of lime-depressed pyrite with oxalic acid.International Journal of Mining Science and Technology, 22(1), 63-67.
  • IGARASHI, T., HERRERA, P.S., UCHIYAMA, H., MIYAMAE, H., IYATOMI, N., HASHIMOTO, K., TABELIN, C.B. 2020. The two-step neutralization ferrite-formation process for sustainable acid mine drainage treatment: Removal of copper, zinc and arsenic, and the influence of coexisting ions on ferritization. Science of the Total Environment, 715, 136877.
  • JIANG, C.L., WANG, X.H., PAREKH, B.K., LEONARD, J.W. 1998. The surface and solution chemistry of pyrite flotation with xanthate in the presence of iron ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 136(1-2), 51-62.
  • JIE, Z., WEIQING, W., JING, L., YANG, H., QIMING, F., HONG, Z. 2014. Fe(III) as an activator for the flotation of spodumene, albite, and quartz minerals. Minerals Engineering, 61, 16-22.
  • JOHNSON, D.B., HALLBERG, K.B. 2005. Acid mine drainage remediation options: a review. Science of the Total Environment, 338(1-2), 3-14.
  • JURJOVEC, J., PTACEK, C.J., BLOWES, D.W. 2002. Acid neutralization mechanisms and metal release in mine tailing a laboratory column experiment. Geochimica et Cosmochimica Acta, 66(9), 1511-1523.
  • KAUR, G., COUPERTHWAITE, S.J., HATTON-JONES, B.W., MILLAR, G.J. 2018. Alternative neutralisation materials for acid mine drainage treatment. Journal of Water Process Engineering, 22, 46-58.
  • KHOSO, S.A., GAO, Z., SUN, W. 2021. Recovery of high-grade copper concentrate from sulfur-rich porphyry ore Rusing tricarboxystarch micromolecule as pyrite depressant. Minerals Engineering, 168, 106916.
  • LEPPINEN, J.O. 1990. FTIR and flotation investigation of the adsorption of ethyl xanthate on activated and non-activated sulfide minerals. International Journal of Mineral Processing, 30(3-4), 245-263.
  • LI, M., LIAN, D., ZHAO, F., TONG, X., WU, C., GAO, X. 2021. Structure-activity of chelating depressants for chalcopyrite/pyrite separation: DFT study and flotation experiment. Physicochemical Problems of Mineral Processing, 57(6), 102-112.
  • LI, Y., CHEN, J., KANG, D., GUO, J. 2012. Depression of pyrite in alkaline medium and its subsequent activation by copper. Minerals Engineering, 26, 64-69.
  • LIU, J., LI, E.-L., JIANG, K., LI, Y.-J., HAN, Y.-X. 2018. Effect of acidic activators on the flotation of oxidized pyrrhotite. Minerals Engineering, 120, 75-79.
  • Lü, C., WANG, Y., QIAN, P., LIU, Y., FU, G., DING, J., YE, S., CHEN, Y. 2018. Separation of chalcopyrite and pyrite from a copper tailing by ammonium humate. Chinese Journal of Chemical Engineering, 26(9), 1814-1821.
  • MAFRA, C., BOUZAHZAH, H., STAMENOV, L., GAYDARDZHIEV, S. 2020. Insights on the effect of pyrite liberation degree upon the acid mine drainage potential of sulfide flotation tailings. Applied Geochemistry, 123, 104774.
  • MASINDI, V., GITARI, M.W., TUTU, H., DEBEER, M. 2015. Efficiency of ball milled South African bentonite clay for remediation of acid mine drainage. Journal of Water Process Engineering, 8, 227-240.
  • MU, Y., PENG, Y., LAUTEN, R.A. 2016. The depression of copper-activated pyrite in flotation by biopolymers with different compositions. Minerals Engineering, 96-97, 113-122.
  • NAIDU, G., RYU, S., THIRUVENKATACHARI, R., CHOI, Y., JEONG, S., VIGNESWARAN, S. 2019. A critical review on remediation, reuse, and resource recovery from acid mine drainage. Environmental Pollution, 247, 1110-1124.
  • ŇANCUCHEO, I., HEDRICH, S., JOHNSON, D.B. 2018. New microbiological strategies that enable the selective recovery and recycling of metals from acid mine drainage and mine process waters. Mineralogical Magazine, 76(7), 2683-2692.
  • NARIYAN, E., WOLKERSDORFER, C., SILLANPAA, M. 2018. Sulfate removal from acid mine water from the deepest active European mine by precipitation and various electrocoagulation configurations. Journal of Environmental Management, 227, 162-171.
  • PARBHAKAR-FOX, A., LOTTERMOSER, B.G. 2015. A critical review of acid rock drainage prediction methods and practices. Minerals Engineering, 82, 107-124.
  • PAT-ESPADAS, A., LOREDO PORTALES, R., AMABILIS-SOSA, L., GóMEZ, G., VIDAL, G. 2018. Review of Constructed Wetlands for Acid Mine Drainage Treatment. Water, 10(11), 1685.
  • PECINA, E.T., URIBE, A., NAVA, F., FINCH, J.A. 2006. The role of copper and lead in the activation of pyrite In xanthate and non-xanthate systems. Minerals Engineering, 19(2), 172-179.
  • SHEN, W.Z., FORNASIERO, D., RALSTON, J. 2001. Flotation of sphalerite and pyrite in the presence of sodium sulfite. International Journal of Mineral Processing, 63(1), 17-28.
  • TAN, L.C., PAPIRIO, S., LUONGO, V., NANCHARAIAH, Y.V., CENNAMO, P., ESPOSITO, G., VAN HULLEBUSCH, E.D., LENS, P.N.L. 2018. Comparative performance of anaerobic attached biofilm and granular sludge reactors for the treatment of model mine drainage wastewater containing selenate, sulfate and nickel. Chemical Engineering Journal, 345, 545-555.
  • TANG, X., CHEN, Y. 2020. Using oxalic acid to eliminate the slime coatings of serpentine in pyrite flotation. Minerals Engineering, 149, 106228.
  • WANG, X.H., FORSSBERG, K.S. 2002. Mechanisms of pyrite flotation with xanthates. International Journal of Mineral Processing, 33(1-4), 275-290.
  • WEISENER, C., GERSON, A. 2000. An investigation of the Cu (II) adsorption mechanism on pyrite by ARXPS and SIMS. Minerals Engineering, 13(13), 1329-1340.
  • WONG, G., LASCELLES, D., AFINCH, J. 2002. Quantifying accidental activation. Part II. Cu activation of pyrite. Minerals Engineering, 15(8), 573-576.
  • ZANIN, M., LAMBERT, H., DU PLESSIS, C.A. 2019. Lime use and functionality in sulphide mineral flotation: A review. Minerals Engineering, 143, 105922.
  • ZHANG, J., WANG, W.Q., LIU, J., HUANG, Y., FENG, Q.M., ZHAO, H. 2014. Fe(III) as an activator for the flotation of spodumene, albite, and quartz minerals. Minerals Engineering, 61, 16-22.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ca8b0711-6b5b-42ef-b2b1-32847c64d353
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.