PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of sintering temperature and CrB2 addition on properties of titanium diboride produced by spark plasma sintering

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Wpływ temperatury spiekania oraz dodatku CrB2 na właściwości dwuborku tytanu otrzymanego metodą plazmowego spiekania iskrowego
Języki publikacji
EN
Abstrakty
EN
The effect of a 5 vol.% chromium diboride addition on the microstructure and properties of sintered titanium diboride was investigated. The preliminary results of studies of TiB2-5CrB2 composites sintered by SPS were discussed. The density, Young's modulus and Vickers hardness of the obtained sinters were examined. Microstructural examinations were carried out by SEM. It was found that sintering TiB2 ceramics by SPS at temperatures of 2000 and 2200°C for 10 minutes is not sufficient. The results of testing the physical and mechanical properties of TiB2-5CrB2 composites have shown that the use of CrB2 may be a good way to obtain a composite material for high performance applications. The best properties were obtained by the composite materials sintered at 2200°C. The results will serve as a basis for further optimization of the SPS process for composite fabrication.
PL
W pracy zbadano wpływ dodatku dwuborku chromu w ilości 5% obj. na mikrostrukturę oraz właściwości spiekanego dwuborku tytanu. Praca przedstawia wstępne wyniki badań dotyczące spiekania kompozytów TiB2-5CrB2 metodą iskrowego spiekania plazmowego (SPS). Dla porównania wytworzono ceramikę TiB2 bez stosowania dodatków do spiekania. Proces spiekania przeprowadzono w temperaturach 2000 oraz 2200°C w czasie 10 minut. Dla otrzymanych spieków przeprowadzono badania gęstości, modułu Younga oraz twardości metodą Vickersa. Przeprowadzono również obserwacje mikrostrukturalne, stosując skaningową mikroskopię elektronową (SEM). Stwierdzono, że spiekanie ceramiki TiB2 metodą SPS w temperturach 2000 oraz 2200°C w czasie 10 min jest niewystarczające. Wyniki badań właściwości fizycznych i mechanicznych kompozytów TiB2-5CrB2 wykazały, że zastosowanie CrB2 może być dobrą drogą do otrzymania materiału kompozytowego o wysokich właściwościach. Dla kompozytów TiB2-5CrB2 spiekanych w 2200°C uzyskano najlepsze właściwości. Otrzymane wyniki będą stanowić podstawę do optymalizacji warunków procesu SPS dla kompozytów TiB2-5CrB2.
Rocznik
Strony
30--36
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
autor
  • Pedagogical University of Krakow, Institute of Technology, ul. Podchorążych 2, 30-084 Krakow, Poland
autor
  • Pedagogical University of Krakow, Institute of Technology, ul. Podchorążych 2, 30-084 Krakow, Poland
autor
  • AGH - University of Science and Technology, Faculty of Non-Ferrous Metals, al. A. Mickiewicza 30, 30-059 Krakow, Poland
autor
  • Pedagogical University of Krakow, Institute of Technology, ul. Podchorążych 2, 30-084 Krakow, Poland
autor
  • Pedagogical University of Krakow, Institute of Technology, ul. Podchorążych 2, 30-084 Krakow, Poland
Bibliografia
  • [1] Matkovich I., Boron and Refractory Borides, Springer, Berlin 1977.
  • [2] Weimin W., Zhengyi F., Hao W., Runzhang Y., Influence of hot pressing sintering temperature and time on microstructure and mechanical properties of TiB2 ceramics, Journal of the European Ceramic Society 2002, 22, 1045-1049.
  • [3] Sulima I., Figiel P., Suśniak M., Świątek M., Sintering of TiB2 ceramics, Archives of Materials Science and Engineering 2007, 28, 11, 687-690.
  • [4] Wang W.M., Fu Z.Y., Self-propagating high-temperature synthesis of TiB2 powder, Journal of Wuhan University of Technology 1995, 10, 2, 34-39.
  • [5] Khanra A.K., Godkhindi M.M., Pathak L.C., Sintering behavior of ultra-fine titanium diboride powder prepared by self-propagating high-temperature synthesis (SHS) technique, Materials Science and Engineering A 2007, 454-455, 281-287.
  • [6] Jaroszewicz J., Michalski A., TiB2 sinters produced of titanium and boron powders using the pulse plasma sintering method, Ceramika, Ceramic 2004, 84, 289-295.
  • [7] Jaroszewicz J., Michalski A., Preparation of a TiB2 composite with a nickel matrix by pulse plasma sintering with combustion synthesis, Journal of the European Ceramic Society 2006, 26, 2427-2430.
  • [8] Verkateswaran T., Basu B., Raju G.B., Kim D.-Y., Densification and properties of transation metal borides-based cermats via spark plasma sintering, Journal of the European Ceramic Society 2006, 26, 2431-2440.
  • [9] Zhang Z.H., Shen X.B., Wang F.C., Lee S.K., Wang L., Densification behavior and mechanical properties of the spark plasma sintered monolithic TiB2 ceramics, Materials Science and Engineering A 2010, 527, 5947-5951.
  • [10] Schmidt J., Boehling M., Burkhardt U., Grin Y., Preparation of titanium diboride TiB2 by spark plasma sintering at slow heating rate, Science and Technology of Advanced Materials 2007, 8, 376-382.
  • [11] Angerer P., Yu L.G., Khor K.A., Korb G., Zalite I., Sparkplasma-sintering (SPS) of nanostructured titanium carbonitride powders, Journal of the European Ceramic Society 2005, 25, 11, 1919-1927.
  • [12] Tokita M., Trends in advanced SPS spark plasma sintering systems and technology, Journal of the Society of Powder Technology Japan 1993, 30, 11, 790-804.
  • [13] Tokita M., Mechanism of spark plasma sintering, Proceeding of NEDO International Symposium on Functionally Graded Materials, Kyoto, Japan 1999, 23-33.
  • [14] Omori M., Sintering, consolidation, reaction and crystal growth by the spark plasma sintering (SPS), Materials Science and Engineering 2002, B90, 34-37.
  • [15] Yucheng W., Zhengyi F., Study of temperature field in spark plasma sintering, Materials Science and Engineering 2000, B287, 183-188.
  • [16] Saheb N., Iqbal Z., Khalil A., Hakeem A.S., Aqeeli N.Al, Laoui T., Al-Qutub A., Kirchner R., Spark plasma sintering of metals and metal matrix nanocomposites: A review, Journal of Nanomaterials, In Press, Available online 13 November 2012, Article ID 983470, 13 pages.
  • [17] Tuffe S., Dubois J., Fantozzi G., Barbier G., Densification, microstructure and mechanical properties of TiB2 -B4C based composites, International Journal of Refractory Metals and Hard Materials 1996, 14, 305-310.
  • [18] Murthy T.S.R.Ch, Sonber J.K., Subramanian C., Hubli R.C., Krishnamurthy N., Suri A.K., Densification and oxidation behavior of a novel TiB2 -MoSi2 -CrB2 composite, International Journal of Refractory Metals and Hard Materials 2013, 36, 243-253.
  • [19] Venkateswaran T., Basu B., Raju G.B., Kim D.Y., Densification and properties of transition metal borides-based cermets via spark plasma sintering, Journal of the European Ceramic Society 2006, 26, 2431-2440.
  • [20] Hulbert D.M., Dina D.J., Dudina V., Mukherjee A.K., The synthesis and consolidation of hard materials by spark plasma sintering, International Journal of Refractory Metals & Hard Materials 2009, 27, 367-375.
  • [21] Graziani T., Bellosi A., Fabbriche D.D., Effect of some irongroup metals on densification and characteristics of TiB2 , International Journal of Refractory Metals and Hard Materials 1992, 11, 105-112.
  • [22] Raju G.B., Biswas K., Basu B., Microstructural characterization and isothermal oxidation behavior of hot-pressed TiB2 -10 wt.% TiSi2 composite, Scripta Materialia 2009, 61, 104-107.
  • [23] Zhang Z.H., Shen X.B., Wang F.Ch., Lee S.-K., Fan Q.B., Cao M.S., Low-temperature densification of TiB2 ceramic by the spark plasma sintering process with Ti as a sintering aid, Scripta Materialia 2012, 66, 3-4, 167-17.
  • [24] Einarsrud M.A., Hagen E., Pettersen G., Grande T., Pressureless sintering of titanium diboride with nickel, nickel boride, and iron additives, J Am. Ceram. Soc. 1997, 80, 3013-3020.
  • [25] González R., Barandika M.G., Ona D., Sánchez J.M., Villellas A., Valea A., et al., New binder phases for the consolidation of TiB2 hardmetals, Materials Science Engineering A 1996, 216, 185-192.
  • [26] Gu M., Huang C., Zou B., Liu B., Effect of (Ni, Mo) and TiN on the microstructure and mechanical properties of TiB2 ceramic tool materials, Materials Science Engineering A 2006, 433, 39-44.
  • [27] Ağaoğullari D., Gökçe H., Duman I., Öveçoğlu M.L., Influences of metallic Co and mechanical alloying on the microstructural and mechanical properties of TiB2 ceramics prepared via pressureless sintering, Journal of the European Ceramic Society 2012, 32, 9, 1949-1956.
  • [28] Mukhopadhyay A., Raju G.B., Basu B., Suri A.K., Correlation between phase evolution, mechanical properties and instrumented indentation response of TiB2 -based ceramic, Journal of the European Ceramic Society 2009, 29, 505-516.
  • [29] Raju G.B., Basu B., Tak N.H., Cho S.J., Temperature dependent hardness and strength properties of TiB2 with TiSi2 sinter-aid, Journal of the European Ceramic Society 2009, 29, 2119-2128.
  • [30] PN EN 1389:2005, Advanced Technical Ceramics - Ceramic Composites - Physical Properties - Determination of Density and Apparent Porosity.
  • [31] Konigshofer R., Furnsinn S., Steinkellner P., Lengauer W., Haas R., Rabitsch K., Scheerer M., Solid-state properties of hot-pressed TiB2 ceramics, International Journal of Refractory Metals & Hard Materials 2005, 23, 350-357.
  • [32] Baik S., Becher P.F., Effect of oxygen contamination on densification of TiB2 , Journal of the American Ceramic Society 1987, 78(8), 527-530.
  • [33] Holcombe C.E, Dykes N.L., Microwave sintering of titanium diboride, Journal of Materials Science 1991, 26, 14, 3730-3738.
  • [34] Murthy T.S.R.Ch., Sonber J.K., Subramanian C., Fotedar R.K., Gonal M.R., Suri A.K., Effect of CrB2 addition on densification, properties and oxidation resistance of TiB2 , International Journal of Refractory Metals & Hard Materials 2009, 27, 976-984.
  • [35] Kumar R., Prakash K.H., Cheang P., Khor K.A., Microstructure and mechanical properties of spark plasma sintered zirconia-hydroxyapatite nano-composite powders, Acta Materialia 2005, 53, 2327-2335.
  • [36] Jain D., Reddy K.M., Mukhopadhyay A., Basu B., Achieving uniform microstructure and superior mechanical properties in ultrafine grained TiB2 -TiSi2 composites using innovative multi stage spark plasma sintering, Materials Science and Engineering A 2010, 528, 200-207.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ca8ad03f-5018-4d15-80eb-342643ed8744
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.