PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Lacustrine deltas and subaqueous fans: almost the same, but different – a review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Although deltas and subaqueous fans are both formed in the same near-shore zones of basins, the hydraulic conditions for their formation, development and sedimentary records are different. The present review discusses the results of previously published studies of fan deltas (Gilbert-type deltas) and subaqueous fans of lacustrine and glaciolacustrine environments. The depositional mechanisms of deltas and subaqueous fans, textural and structural features of the lithofacies associations and their typical lithofacies are presented. The characteristics of subaqueous fans, which are still relatively poorly understood and are often overlooked in sedimentological interpretations of lacustrine sedimentary successions, receive particular attention. The palaeoenvironmental and lithological differences between deltas and subaqueous fans are highlighted.
Czasopismo
Rocznik
Strony
43--55
Opis fizyczny
Bibliogr. 85 poz.
Twórcy
  • Institute of Geology, Adam Mickiewicz University, Krygowskiego 12, PL-61-680 Poznań, Poland
  • Institute of Geology, Adam Mickiewicz University, Krygowskiego 12, PL-61-680 Poznań, Poland
Bibliografia
  • Adams, E.W. & Schlanger, W., 2000. Basic types of submarine slope curvature. Journal of Sedimentary Research 70, 814–828.
  • Alexander, J. & Mulder, T., 2002. Experimental quasi-steady density currents. Marine Geology 186, 195–210.
  • Back, S., de Batist, M., Kirillov, P., Strecker, M.R. & Vanhauwaert, P., 1998. The Frolikha Fan: a large Pleistocene glaciolacustrine outwash fan in N Lake Baikal, Siberia. Journal of Sedimentary Research 68, 841–849.
  • Bornhold, B.D. & Prior, D.B., 1990. Morphology and sedimentary processes on the subaqueous Noeick River delta, British Columbia, Canada. International Association of Sedimentologists Special Publication 10, 169–181.
  • Breda, A., Mellere, D. & Massari, F., 2007. Facies and processes in a Gilbert-delta-filled incised valley (Pliocene of Ventimiglia, NW Italy). Sedimentary Geology 200, 31–55.
  • Cao, Y., Wang, Y., Gluyas, J.G., Liu, H., Liu, H. & Song, M., 2018. Depositional model for lacustrine nearshore subaqueous fans in a rift basin: The Eocene Shahejie Formation, Dongying Sag, Bohai Bay Basin, China. Sedimentology 65, 2117–2148.
  • Carvalho, A.H. & Vesely, F.F., 2017. Facies relationships recorded in a Late Paleozoic fluvio-deltaic system (Parana, Brazil): Insights into the timing and triggers of subaqueous gravity flows. Sedimentary Geology 352, 45–62.
  • Chikita, K., 1992. Dynamic processes of sedimentation by river-induced turbidity currents. II. Application of a two-dimensional, advective diffusion model. Transactions of Japan Geomorphological Union 13, 1–18.
  • Chough, S.K. & Hwang, I.G., 1997. The Duksung fan delta, SE Korea: growth of delta lobes on a Gilbert-type topset in response to relative sea-level rise. Journal of Sedimentary Research 67, 725–739.
  • Dasgupta, P., 2002. Architecture and facies pattern of a sublacustrine fan, Jharia Basin, India. Sedimentary Geology 148, 373–387.
  • Doktor, M., 1983. Sedimentation of the Miocene gravel deposits in the Carpathian Foredeep. Studia Geologica Polonica 78, 107 pp. (in Polish with English summary)
  • Dorsey, R.J., Umhoefer, P.J. & Renne, P.R., 1995. Rapid subsidence and stacked Gilbert-type fan deltas, Pliocene Loreto basin, Baja California Sur, Mexico. Sedimentary Geology 98, 181–204.
  • Eriksson, P.G., 1991. A note on coarse-grained gravity-flow deposits within Proterozoic lacustrine sedimentary rocks, Transvaal Sequence, S Africa. Journal of African Earth Sciences 12, 549–553.
  • Ethridge, F.G. & Wescott, W.A., 1984. Tectonic setting, recognition and hydrocarbon reservoir potential of fan delta deposits. Memoir Canadian Society of Petroleum Geologists 10, 217–235.
  • Falk, P.A. & Dorsey, R.J., 1998. Rapid development of gravelly high-density turbidity currents in marine Gilbert-type fan deltas, Loreto Basin, Baja California Sur, Mexico. Sedimentology 45, 331–349.
  • Fielding, C.R. & Webb, J.A., 1996. Facies and cyclicity of the Late Permian Bainmedart Coal Measures in the N Prince Charles Mts, MacRobertson Land, Antarctica. Sedimentology 43, 295–322.
  • Gilbert, G.K., 1890. Lake Bonneville. U.S. Geological Survey Monitor 1, 438 pp.
  • Gilbert, R. & Crookshanks, S., 2009. Sediment waves in a modern high-energy glacilacustrine environment. Sedimentology 56, 645–659.
  • Gobo, K., Ghinassi, M. & Nemec, W., 2014. Reciprocal changes in foreset to bottomset facies in a Gilbert-type delta: Response to short-term changes in base level. Journal of Sedimentary Research 84, 1079–1095.
  • Gobo, K., Ghinassi, M. & Nemec, W., 2015. Gilbert-type deltas recording short-term base-level changes: Delta-brink morphodynamics and related foreset facies. Sedimentology 62, 1923–1949.
  • Gruszka, B., 2001. Climatic versus tectonic factors in the formation of the glaciolacustrine succession (Belchatow outcrop, central Poland). Global and Planetary Change 28, 53–71.
  • Gruszka, B., 2007. The Pleistocene glaciolacustrine sediments in the Belchatow mine (central Poland): Endogenic and exogenic controls. Sedimentary Geology 193, 149–166.
  • Gruszka, B. & Terpiłowski, S., 2014. Sedimentary record of the Younger Saalian ice margin stagnation in E Poland: development of a regular pattern of glaciolacustrine kames. Geografiska Annaler A, 97, 279–298.
  • Hanáček, M., Nyvlt, D., Skacelova, Z., Nehyba, S., Prochazkova, B. & Engel, Z., 2018. Sedimentary evidence for an ice-sheet dammed lake in a mountain valley of the Eastern Sudetes, Czechia. Acta Geologica Polonica 68, 107–134.
  • Haughton, P.D.W., Barker, S.P. & McCaffrey, W.D., 2003. ‘Linked’ debrites in sand-rich turbidite systems – origin and significance. Sedimentology 50, 459–482.
  • Hilbe, M. & Anselmetti, F.S., 2014. Signatures of slope failures and river-delta collapses in a perialpine lake (Lake Lucerne, Switzerland). Sedimentology 61, 1883–1907.
  • Hornung, J.J., Asprion, U. & Winsemann, J., 2007. Jet-efflux deposits of a subaqueous ice-contact fan, glacial Lake Rinteln, NW Germany. Sedimentary Geology 193, 167–192.
  • Hwang, I.G. & Chough, S.K., 1990. The Miocene Chunbuk Fmormation, SE Korea: marine Gilbert-type fan-delta system. International Association of Sedimentologists Special Publication 10, 235–254.
  • Ilgar, A. & Nemec, W., 2005. Early Miocene lacustrine deposits and sequence stratigraphy of the Ermenek Basin, Central Taurides, Turkey. Sedimentary Geology 173, 233–275.
  • Jerrett, R.M., Bennie, L.I., Flint, S.S. & Greb, S.F., 2016. Extrinsic and intrinsic controls on mouth bar and mouth bar complex architecture: Examples from the Pennsylvanian (Upper Carboniferous) of the central Appalachian Basin, Kentucky, USA. Geological Society of America Bulletin 128, 1696–1716.
  • Knudsen, O. & Marren, P.M., 2002. Sedimentation in a volcanically dammed valley, Bruarjökull, NE Iceland. Quaternary Science Reviews 21, 1677–1692.
  • Krzyszkowski, D., Krzywicka, A., Wachecka-Kotkowska, L. & Sroka, W., 2019. The Middle Pleistocene glaciolacustrine environment of an ice-dammed mountain valley, Sudeten Mts, Poland. Boreas 48, 966–987.
  • Lang, J., Le Heron, D.P., Van Den Berg, J.H. & Winsemann, J., 2020. Bedforms and sedimentary structures related to supercritical flows in glacigenic settings. Sedimentology doi: 10.1111/sed.12776
  • Lang, J., Sievers, J., Loewer, M., Igel, J. & Winsemann, J., 2017. 3D architecture of cyclic-step and antidune deposits in glacigenic subaqueous fan and fan-delta settings: Intergrating outcrop and ground-penetrating radar data. Sedimentary Geology 362, 83–100.
  • Leszczyński, S. & Nemec, W., 2015. Dynamic stratigraphy of composite peripheral unconformity in a foredeep basin. Sedimentology 62, 645–680.
  • Liverman, D.G.E., 1991. Sedimentology and history of a Late Wisconsinan glacial lake, Grande Prairie, Alberta, Canada. Boreas 20, 241–257.
  • Longhitano, S.G., 2008. Sedimentary facies and sequence stratigraphy of coarse-grained Gilbert-type deltas within the Pliocene thrust-top Potenza Basin (S Apennines, Italy). Sedimentary Geology 210, 87–110.
  • Lowe, D.R., 1982. Sediment-gravity flows. II. Depositional models with special reference to the deposits of high-density turbidity currents. Journal of Sedimentary Petrology 52, 279–297.
  • Lønne, I., 1993. Physical signatures of ice advance in a Younger Dryas ice-contact delta, Troms, N Norway: implication for glacier-terminus history. Boreas 22, 59–70.
  • Lønne, I., 1995. Sedimentary facies and depositional architecture of ice-contact glaciomarine systems. Sedimentary Geology 98, 13–43.
  • Lønne, I. & Nemec, W., 2004. High-arctic fan delta recording deglaciation and environment disequilibrium. Sedimentology 51, 553–589.
  • Lunkka, J.P. & Gibbard, P., 1996. Ice-marginal sedimentation and its implications for ice-lobe deglaciation patterns in the Baltic region: Pohjankangas, W Finland. Journal of Quaternary Sciences 11, 377–388.
  • Massari, F., 1996. Upper-flow-regime stratification types on steep-face, coarse-grained, Gilbert-type progradational wedges (Plesistocene, S Italy). Journal of Sedimentary Research 66, 364–375.
  • Mastalerz, K., 1995. Deposits of high-density turbidity currents on fan-delta slopes: an example from the upper Visean Szczawno Fm., Intrasudetic Basin, Poland. Sedimentary Geology 98, 121–146.
  • Mleczak, M. & Pisarska-Jamroży, M., 2019. Miocene quartz sands redeposited on subaqueous and alluvial fans during the Saalian: Interpretation of the depositional scenario at Ujście, western Poland. Geologos 25, 125–137.
  • Mortimer, E., Gupta, S. & Cowie, P., 2005. Clinoform nucleation and growth in coarse-grained deltas, Loreto Basin, Baja California Sur, Mexico: a response to episodic accelerations in fault displacement. Basin Research 17, 337–359.
  • Mulder, T. & Alexander, J., 2001. The physical character of subaqueous sedimentary density flows and their deposits. Sedimentology 48, 269–299.
  • Mulder, T. & Syvitski, J.P.M., 1995. Turbidity currents generated at river mouths during exceptional discharges to the world oceans. Journal of Geology 103, 285–299.
  • Mulder, T., Savoye, B. & Syvitski, J.P.M., 1997. Numerical modelling of a mid-sized gravity flow: the 1979 Nice turbidity current (dynamics, processes, sediment budget and seafloor impact). Sedimentology 44, 305–326.
  • Mulder, T., Migeon, S., Savoye, B. & Faugeres, J.C., 2001. Inversely graded turbidite sequences in the Deep Mediterranean: a record of deposits from flood-generated turbidity currents? Geo-Marine Letters 21, 86–93.
  • Mulder, T., Syvitski, J.P.M., Migeon, S., Faugeres, J.C. & Savoye, B., 2003. Marine hyperpycnal flows: initiation, behavior and related deposits. A review. Marine & Petroleum Geology 20, 816–882.
  • Nemec, W., 1990. Deltas – remarks on terminology and classification. International Association of Sedimentologists Special Publication 10, 3–12.
  • Nemec, W. & Steel, R.J. 1984. Alluvial and coastal conglomerates: their significant features and some comments on gravelly mass–flow deposits. [In:] E.H.Koster and R.J. Steel (Eds). Sedimentology of Gravels and Conglomerates. Canadian Society of Petroleum Geologists Memoir 10,1–31.
  • Nemec, W., Lønne, I. & Blikra, L.H., 1999. The Kregnes moraine in Gauldalen, west-central Norway: anatomy of a Younger Dryas delta in a palaeofjord basin. Boreas 28, 454–476.
  • Paterson, J.T. & Cheel, R.J., 1997. The depositional history of the Bloomington Complex, an ice-contact deposit in the Oak Ridges Moraine, S Ontario, Canada. Quaternary Science Reviews 16, 705–719.
  • Pharo, C.H. & Carmack, E.C., 1979. Sedimentation processes in a short residence-time intermontane lake, Kamloops Lake, British Columbia. Sedimentology 26, 523–541.
  • Pisarska-Jamroży, M. & Weckwerth, P., 2013. Soft-sediment deformation structures in a Pleistocene glaciolacustrine delta and their implications for the recognition of subenvironments in delta deposits. Sedimentology 60, 637–665.
  • Plink-Björklund, P. & Ronnert, L., 1999. Depositional processes and internal architecture of Late Weichselian ice-margin submarine fan and delta settings, Swedish west coast. Sedimentology 46, 215–234.
  • Postma, G., 1990. Depositional architecture and facies of river and fan deltas: a synthesis. International Association of Sedimentologists Special Publication 10, 13–27.
  • Przepióra, P., Kalicki, T., Aksamit, M., Biesaga, P., Frączek, M., Grzeszczyk, P., Malęga, E., Chrabąszcz, M., Kłusakiewicz, E. & Kusztal, P., 2019. Secular and catastrophic processes reflected in sediments of the Suchedniów water reservoir, Holy Cross Mountains (Poland). Geologos 25, 139–152.
  • Ravier, E., Buoncristiani, J.-F., Clerc, S., Guiraud, M., Menzies, J. & Portier, E., 2014. Sedimentological and deformational criteria for discriminating subglaciofluvial deposits from subaqueous ice-contact fan deposits: A Pleistocene example (Ireland). Sedimentology 61, 1382–1410.
  • Rohais, S., Eschard, R. & Guillocheau, F., 2008. Depositional model and stratigraphic architecture of rift climax Gilbert-type fan deltas (Gulf of Corinth, Greece). Sedimentary Geology 210, 132–145.
  • Røe, S.L., 1995. Stacked fluviodeltaic cycles in the Upper Proterozoic Godkeila Member, Varanger Peninsula, N Norway. Norsk Geologisk Tidsskrift 75, 229–242.
  • Russell, H.A.J. & Arnott, R.W.C., 2003. Hydraulic jump and hyperconcentrated-flow deposits of a glacigenic subqueous fan: Oak Ridges Moraine, S Ontario, Canada. Journal of Sedimentary Research 73, 887–905.
  • Russell, A.J. & Knudsen, O., 1999. Controls on the sedimentology of the November 1996 jökulhlaup deposits, Skeidararsandur, Iceland. International Association of Sedimentologists Special Publication 28, 315–329.
  • Rust, B.R. & Romanelli, R., 1975. Late Quaternary subaqueous deposits near Ottawa, Canada. Society of Economic Paleontologists and Mineralogists Special Publication 23, 238–248.
  • Shanmugam, G., 2018. The hyperpycnite problem. Journal of Palaeogeography 7, 6, https://doi.org/10.1186/s42501-018-0001-7
  • Shanmugam, G., 2019. Reply to discussions by Zavala (2019) and by Van Loon, Hüeneke, and Mulder (2019) on Shanmugam, G. (2018, Journal of Palaeogeography, 7 (3): 197–238): ‘the hyperpycnite problem’. Journal of Palaeogeography 8, 31, https://doi.org/10.1186/s42501-019-0047-1
  • Slomka, J.M. & Hartman, G.M.D., 2019. Sedimentary architecture of a glaciolacustrine braidplain delta: proxy evidence of a pre-Middle Wisconsinan glaciation (Grimshaw gravels, Interior Plains, Canada). Boreas 48, 215–235.
  • Sohn, Y.K., Kim, B.C., Hwang, I.B., Bahk, J.J., Choe, M.Y. & Chough, S.K., 1997. Characteristics and depositional processes of large-scale gravelly Gilbert-type foresets in the Miocene Doumsan fan delta, Pohang Basin, SE Korea. Journal of Sedimentary Research 67, 130–141.
  • Sohn, Y.K., Rhee, C.W. & Kim, B.C., 1999. Debris flow and hyperconcentrated flood-flow deposits in an alluvial fan, northwestern part of the Cretaceous Yongdong Basin, Central Korea. The Journal of Geology 107, 111–132.
  • Stingl, K., 1994. Depositional environment and sedimentary of the basinal sediments in the Eibiswalder Bucht (Radl Fm. and Lower Eibiswald Beds), Miocene W Styrian Basin, Austria. Geologische Rundschau 83, 811–821.
  • Syvitski, J.P.M. & Hein, F.J., 1991. Sedimentology of an Arctic Basin: Hirbilung Fjord, Baffin Island, Northwest Territories. Geological Survey of Canada Paper 91–11, 61 pp.
  • Syvitski, J.P.M., Smith, J.N., Calabrese, E.A. & Boudreau, B.P., 1988. Basin sedimentation and the growth of prograding deltas. Journal of Geophysical Research 93, C6, 6895–6908.
  • Van Loon, A.J., Hüneke, H. & Mulder, T., 2019. The hyperpycnite problem: comment. Journal of Palaeogeography 8, 1. https://doi.org/10.1186/s42501-019-0034-6
  • White, J.D.L., 1992. Pliocene subaqueous fans and Gilbert-type deltas in maar crater lakes, Hopi Buttes, Navajo Nation (Arizona), USA. Sedimentology 39, 931–946.
  • Winsemann, J., Asprion, U., Meyer, T. & Schramm, C., 2007. Facies characteristics of Middle Pleistocene (Saalian) ice-margin subaqueous fan and delta deposits, glacial Lake Leine, NW Germany. Sedimentary Geology 193, 105–129.
  • Winsemann, J., Lang, J., Polom, U., Loewer, M., Igel, J., Pollok, L. & Brandes, C., 2018. Ice-marginal forced deltas in glacial lake basins: geomorphology, facies variability and large-scale depositional architecture. Boreas 47, 973–1002.
  • Winsemann, J., Hornung, J.J., Meinsen, J., Asprion, U., Polom, U., Brandes, C., Baussman, M. & Weber, C., 2009. Anatomy of subaqueous ice-contact fan and delta complex, Middle Pleistocene, NW Germany. Sedimentology 56, 1041–1076.
  • Woźniak, P.P., Pisarska-Jamroży, M. & Elwirski, Ł., 2018. Orientation of gravels and soft-sediment clasts in subaqueous debrites – implications for palaeodirection reconstruction: case study from Puck Bay, N Poland. Bulletin of Geological Society of Finland 90, 1–14.
  • Yperen, A.E., Poyatos-Moré, M., Holbrook, J.M. & Midtkandal, I., 2020. Internal mouth-bar variability and preservation of subordinate coastal processes in low-accommodation proximal deltaic settings (Cretaceous Dakota Group, New Mexico, USA). The Depositional Record 6, 431–458.
  • Yu, B., A. Cantelli, J. Marr, C. Pirmez, C. O’Byrne & G. Parker, 2006. Experiments on Self-Channelized Subaqueous Fans Emplaced by Turbidity Currents and Dilute Mudflows. Journal of Sedimentary Research 76(6), 889–902.
  • Zavala, C., 2020. Hyperpycnal (over density) flows and deposits. Journal of Palaeogeography 9, 17, https://doi.org/10.1186/s42501-020-00065-x
  • Zavala, C., Ponce, J.J., Arcuri, M., Drittanti, D., Freije, H. & Asensio, M., 2006. Ancient lacustrine hyperpycnites: a depositional model from a case study in the Rosayo Fm. (Cretaceous) of west-central Argentina. Journal of Sedimentary Research 76, 41–59.
  • Zeng, J., Lowe, D.R., Prior, D.B., Wiseman, W.J. & Bornhold, B.D., 1991. Flow properties of turbidity currents in Bute Inlet, B.C. Sedimentology 38, 975–996.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ca8a4c30-6c5b-47f5-88d2-4eb6dceaf01f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.