PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A deep learning based hybrid model for maternal health risk detection and multifaceted emotion analysis in social networks

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the field of public health, accurately identifying maternal health risks through social network data is both vital and challenging due to the complexities of multimodal sentiment analysis. Our study addresses this challenge by introducing the maternal health risk factor detection using deep learning approach (MHRFD-DLA), a novel framework that integrates convolutional neural networks, long short-term memory networks, and attention mechanisms. This approach enhances sentiment analysis and risk detection in maternal health, with the focus on critical areas such as prenatal care, mental health, and nutrition. MHRFD-DLA utilizes multimodal data, including text and electrocardiogram (ECG) signals, offering a comprehensive assessment of maternal health risks. Our model outperforms existing multimodal sentiment analysis models, achieving an accuracy of 98.4%, a precision of 97.6%, a recall of 95.6%, and an F1 score of 98.4%. Through performance evaluations, visualizations such as the confusion matrix and class distributions further validate its robustness. The MHRFD-DLA model not only bridges significant gaps in current methodologies, but it also sets a new benchmark for maternal health surveillance and intervention, demonstrating its practicality and effectiveness in real-world applications.
Rocznik
Strony
565--577
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
  • Faculty of Information and Communication Engineering, Anna University, UCE-BIT Campus, Mandaiyur, Tiruchirappalli 620 024, Chennai, India
  • Department of Computer Applications, Anna University, UCE-BIT Campus, Mandaiyur, Tiruchirappalli 620 024, Chennai, India
Bibliografia
  • [1] Acharya, A., Ramesh, R., Fathima, T. and Lakhani, T. (2023). Clinical tools to detect postpartum depression based on machine learning and EEG: A review, in 2nd International Conference on Computational Systems and Communication (ICCSC), Thiruvananthapuram, India, pp. 1-8.
  • [2] Ahmed, M., Kashem, M.A., Rahman, M. and Khatun, S. (2020). Review and analysis of risk factor of maternal health in remote area using the internet of things (IoT), in A.N. Kasruddin Nasir et al. (Eds), InECCE2019, Lecture Notes in Electrical Engineering, Vol. 632, Springer, Singapore, pp. 357-365.
  • [3] Ahmed, M. and Kashem, M.A. (2020). IoT based risk level prediction model for maternal health care in the context of Bangladesh, Proceedings of the 2nd International Conference on Sustainable Technologies for Industry 4.0 (STI), Dhaka, Bangladesh, pp. 1-6, DOI: 10.1109/STI50764.2020.9350320.
  • [4] Afyouni, I., Al Aghbari, Z. and Razack, R.A. (2022). Multi-feature, multimodal, and multi-source social event detection: A comprehensive survey, Information Fusion 79: 279-308, DOI: 10.1016/j.inffus.2021.10.013.
  • [5] Argyriou, A., Evgeniou, T. and Pontil, M. (2008). Convex multi-task feature learning, Machine Learning 73(3): 243-272.
  • [6] Byeon, H. (2023). Advances in machine learning and explainable artificial intelligence for depression prediction, International Journal of Advanced Computer Science and Applications 14(6): 896, DOI: 10.14569/IJACSA.2023.0140656.
  • [7] Cimtay, Y., Ekmekcioglu, E. and Caglar-Ozhan, S. (2020). Cross-subject multimodal emotion recognition based on hybrid fusion, IEEE Access 8: 168865-168878, DOI: 10.14569/IJACSA.2023.0140656.
  • [8] Fazeli, S. (2024). Heartbeat data, https://www.kaggle.com/datasets/shayanfazeli/heartbeat.
  • [9] García-Díaz, J.A., Cánovas-García, M. and Valencia-García, R. (2020). Ontology-driven aspect-based sentiment analysis classification: An infodemiological case study regarding infectious diseases in Latin America, Future Generation Computer Systems 112: 641-657, DOI: 10.1016/j.future.2020.06.019.
  • [10] Geethanjali, R. and Valarmathi, A. (2022). Issues and future challenges of sentiment analysis for social networks - A survey, 2022 International Conference on Automation, Computing and Renewable Systems (ICACRS), Pudukkottai, India, pp. 332-339.
  • [11] Geethanjali, R. (2024). Maternal health risk data, https://www.kaggle.com/datasets/geethanjaliyokesh/maternal-health-risk-data-1.
  • [12] Ghosh, T., Banna, M.H.A., Nahian, M.J.A., Uddin, M.N., Kaiser, M.S. and Mahmud, M. (2023). An attention-based hybrid architecture with explainability for depressive social media text detection in Bangla, Expert Systems with Applications 213: 119007, DOI: 10.1016/j.eswa.2022.119007.
  • [13] Gopalakrishnan, R. (2023). Attribute selection hybrid network model for risk factors analysis of postpartum depression using social media, Brain Informatics 10(1): 28, DOI: 10.1186/s40708-023-00206-7.
  • [14] Gupta, G.K. and Sharma, D.K. (2023). Depression detection using semantic representation-based semi-supervised deep learning, International Journal of Data Analysis Techniques and Strategies 15(3): 217-237.
  • [15] Gupta, V. (2021). An emotion care model using multimodal textual analysis on COVID-19, Chaos Solitons Fractals 144: 110708, DOI: 10.1016/j.chaos.2021.110708.
  • [16] Kachuee, M., Fazeli, S. and Sarrafzadeh, M. (2018). ECG heartbeat classification: A deep transferable representation, arXiv: 1805.00794.
  • [17] Lilhore, U.K., Dalal, S., Varshney, N., Sharma, Y.K., Rao, K.B.V.B., Rao, V.V.R.M., Alroobaea R., Simaiya, S., Margala, M. and Chakrabarti, P. (2024). Prevalence and risk factors analysis of postpartum depression at early stage using hybrid deep learning model, Scientific Reports 14: 4533, DOI: 10.1038/s41598-024-54927-8.
  • [18] Nadeem, A., Naveed, M., Islam Satti, M., Afzal, H., Ahmad, T. and Kim, K.-I. (2022). Depression detection based on hybrid deep learning SSCL framework using self-attention mechanism: An application to social networking data, Sensors 22(24): 9775, DOI: 10.3390/s22249775.
  • [19] Nazir, A., Rao, Y., Wu, L. and Sun, L. (2022). Issues and challenges of aspect-based sentiment analysis: A comprehensive survey, IEEE Transactions on Affective Computing 13(2): 845-863.
  • [20] Nti, I.K. and Owusu-Boadu, B. (2022). A hybrid boosting ensemble model for predicting maternal mortality and sustaining reproductive health, Smart Health 26: 100325, DOI: 10.1016/j.smhl.2022.100325.
  • [21] Oueslati, O., Cambria, E., HajHmida, M.B. and Ounelli, H. (2020). A review of sentiment analysis research in Arabic language, arXiv: 2009.01360.
  • [22] Pooja and Bhalla, R. (2022). A review paper on the role of sentiment analysis in quality education, SN Computer Science 3(6): 469.
  • [23] Rahman, A. and Alam, M.G.R. (2023). Explainable AI based maternal health risk prediction using machine learning and deep learning, 2023 IEEE World AI IoT Congress (AIIoT), Seattle, USA, pp. 0013-0018, DOI: 10.1109/AIIoT58121.2023.10174540.
  • [24] Shoumy, N.J., Ang, L.-M., Seng, K.P., Rahaman, D.M.M. and Zia, T. (2020). Multimodal big data affective analytics: A comprehensive survey using text, audio, visual and physiological signals, Journal of Network and Computer Applications 149: 102447, DOI: 10.1016/j.jnca.2019.102447.
  • [25] Teisseyre, P. (2022). Joint feature selection and classification for positive unlabelled multi-label data using weighted penalized empirical risk minimization, International Journal of Applied Mathematics and Computer Science 32(2): 311-322, DOI: 10.34768/amcs-2022-0023.
  • [26] Titla-Tlatelpa, J. de J., Ortega-Mendoza, R.M., Montes-y-Gómez, M. and Villaseñor-Pineda, L. (2021). A profile-based sentiment-aware approach for depression detection in social media, EPJ Data Science 10, Article no. 54, DOI: 10.1140/epjds/s13688-021-00309-3.
  • [27] Togunwa, T.O., Babatunde, A.O. and Abdullah, K.U. (2023). Deep hybrid model for maternal health risk classification in pregnancy: Synergy of ANN and random forest, Frontiers in Artificial Intelligence 6: 1213436, DOI: 10.3389/frai.2023.1213436.
  • [28] Wang, S., Chen, J. and Lu, Z. (2021). Multimodal sentiment analysis using transformer-based approaches, IEEE Transactions on Affective Computing 12(1): 82-93.
  • [29] Xue, Y., Wang, Y. and Yu, M. (2020). Cross-modal sentiment analysis with sentiment-enhanced multimodal fusion, Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 5677-5687, (online).
  • [30] Zhang, J., Yin, Z., Chen, P. and Nichele, S. (2020). Emotion recognition using multimodal data and machine learning techniques: A tutorial and review, Information Fusion 59: 103-126, DOI: 10.1016/j.inffus.2020.01.011.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ca8a1c46-9bd5-4b0c-997d-b9b14e8299d1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.