PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

System and approach to detecting of gastric slow wave and environmental noise suppression based on optically pumped magnetometer

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Gastric slow waves (SWs) are commonly used for the quantitative assessment of gastric functional disorders. Compared with surface electrogastrography, using of magnetic signals to record SWs can achieve higher-quality signal recording. In this study, we discovered that optically pumped magnetometers (OPM) based on the spin exchange relaxation-free method have comparable weak magnetic detection capabilities to superconducting quantum interference devices but without liquid helium cooling. However, owing to the inevitable interference of low-frequency environmental drift, the characteristic features of SW are obscured, greatly increasing the difficulty in detecting gastric magnetic signals. Therefore, in this study, we constructed an OPM Magnetogastrography (OPM-MGG). We proposed an adaptive filtering architecture combined with environmental drift suppression and a non-stationary signal decomposition method for extracting SW signals. Through controlled human experiments, the results demonstrated that our testing system successfully extracted SW signals in the frequency range of 2-4 cycles per minute. The extracted SW signals exhibited consistent power and time-frequency characteristics with the reported results. This study validates the feasibility of (1) using the OPM-MGG system for capturing SW signals and (2) the proposed processing strategies for identifying ultralow-frequency SW signals. In conclusion, the OPM-MGG system and the signal extraction strategies developed in this study have the potential to provide a wearable technology for bioweak magnetic field measurements, offering new opportunities for both research and clinical applications.
Twórcy
autor
  • School of Instrumentation Science and Optoelectronics Engineering, Beihang University, Beijing 100191, China
autor
  • School of Instrumentation Science and Optoelectronics Engineering, Beihang University, Beijing 100191, China
autor
  • School of Instrumentation Science and Optoelectronics Engineering, Beihang University, Beijing 100191, China
autor
  • School of Instrumentation Science and Optoelectronics Engineering, Beihang University, Beijing 100191, China
  • School of Instrumentation Science and Optoelectronics Engineering, Beihang University, Beijing 100191, China
  • Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province(2021E10022), Hangzhou Innovation Institute of Beihang University, Hangzhou, 300001, China
  • School of Instrumentation Science and Optoelectronics Engineering, Beihang University, Beijing 100191, China
  • Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province(2021E10022), Hangzhou Innovation Institute of Beihang University, Hangzhou, 300001, China
Bibliografia
  • [1] Drossman D. Functional gastrointestinal disorders: History, pathophysiology, clinical features and Rome IV. Gastroenterology 2016. http://dx.doi.org/10.1053/j.gastro.2016.02.032.
  • [2] Sperber A, Bangdiwala S, Drossman D, Ghoshal U, Simrén M, Tack J, et al. Worldwide prevalence and burden of functional gastrointestinal disorders, results of rome foundation global study. Gastroenterology 2020. http://dx.doi.org/10. 1053/j.gastro.2020.04.014.
  • [3] Nyrop K, Palsson O, Levy R, Korff M, Feld A, Turner M, et al. Costs of health care for irritable bowel syndrome, chronic constipation, functional diarrhoea and functional abdominal pain. Aliment Pharmacol Ther 2007;26. http://dx.doi.org/ 10.1111/j.1365-2036.2007.03370.x.
  • [4] O’Grady G, Wang TH, Du P, Angeli T, Lammers W, Cheng LK. Recent progress in gastric arrhythmia: Pathophysiology, clinical significance and future horizons. Clin Exp Pharmacol Physiol 2014;41. http://dx.doi.org/10.1111/1440-1681.12288.
  • [5] Fukami N, Anderson M, Khan KM, Harrison M, Appalaneni V, Ben-Menachem T, et al. The role of endoscopy in gastroduodenal obstruction and gastroparesis. Gastrointest Endosc 2011;74 1:13-21. http://dx.doi.org/10.1016/j.gie.2010.12.003.
  • [6] Saad R, Hasler W. A technical review and clinical assessment of the wireless motility capsule. Gastroenterol Hepatol 2011;7 12:795-804.
  • [7] Fox M, Kahrilas P, Roman S, Gyawali C, Scott S, Rao S, et al. Clinical measurement of gastrointestinal motility and function: who, when and which test? Nature Rev Gastroenterol Hepatol 2018;15:568-79. http://dx.doi.org/10.1038/s41575-018-0030-9.
  • [8] Rao S, Camilleri M, Hasler W, Maurer A, Parkman H, Saad R, et al. Evaluation of gastrointestinal transit in clinical practice: position paper of the American and European neurogastroenterology and motility societies. Neurogastroenterol Motility 2011;23. http://dx.doi.org/10.1111/j.1365-2982.2010.01612.x.
  • [9] Hinder R, Kelly K. Human gastric pacesetter potential. Site of origin, spread, and response to gastric transection and proximal gastric vagotomy. Am J Surg 1977;133 1:29-33. http://dx.doi.org/10.1016/0002-9610(77)90187-8.
  • [10] Smout A, Schee EJ, Grashuis J. What is measured in electrogastrography? Dig Dis Sci 1980;25:179-87. http://dx.doi.org/10.1007/BF01308136.
  • [11] Abell T, Malagelada J. Electrogastrography. Current assessment and future perspectives. Dig Dis Sci 1988;33 8:982-92. http://dx.doi.org/10.1007/BF01535995.
  • [12] O’Grady G, Du P, Cheng LK, Egbuji JU, Lammers WJEP, Windsor JA, et al. Origin and propagation of human gastric slow-wave activity defined by high-resolution mapping. Am J Physiol-Gastrointest Liver Physiol 2010;299(3):G585-92. http: //dx.doi.org/10.1152/ajpgi.00125.2010.
  • [13] Bradshaw LA, Kim JHK, Somarajan S, Richards W, Cheng LK. Characterization of electrophysiological propagation by multichannel sensors. IEEE Trans Biomed Eng 2016;63:1751-9. http://dx.doi.org/10.1109/TBME.2015.2502065.
  • [14] Avci R, Miller KJW, Paskaranandavadivel N, Bradshaw LA, Huckabee M, Cheng LK. Bioelectrical signals for the diagnosis and therapy of functional gastrointestinal disorders. Appl Sci 2020;10:8102. http://dx.doi.org/10.3390/app10228102.
  • [15] Avci R, Eichler CE, Paskaranandavadivel N, Du P, Angeli-Gordon T, Bradshaw LA, et al. Characterizing spatial signatures of gastric electrical activity using biomagnetic source localization. IEEE Trans Biomed Eng 2022;69:3551-8. http://dx.doi.org/10.1109/TBME.2022.3174847.
  • [16] Bradshaw LA, Cheng LK, Chung E, Obioha CB, Erickson J, Gorman BL, et al. Diabetic gastroparesis alters the biomagnetic signature of the gastric slow wave. Neurogastroenterol Motility 2016;28. http://dx.doi.org/10.1111/nmo.12780.
  • [17] Somarajan S, Muszynski ND, Obioha C, Richards W, Bradshaw LA. Biomagnetic and bioelectric detection of gastric slow wave activity in normal human subjects-A correlation study. Physiol Meas 2012;33:1171-9. http://dx.doi.org/10.1088/0967-3334/33/7/1171.
  • [18] Brookes M, Leggett J, Rea M, Hill R, Holmes N, Boto E, et al. Magnetoencephalography with optically pumped magnetometers (OPM-meg): the next generation of functional neuroimaging. Trends Neurosci 2022;45:621-34. http: //dx.doi.org/10.1016/j.tins.2022.05.008.
  • [19] Boto E, Holmes N, Leggett J, Roberts G, Shah V, Meyer S, et al. Moving magnetoencephalography towards real-world applications with a wearable system. Nature 2018;555. http://dx.doi.org/10.1038/nature26147.
  • [20] Fenici R, Brisinda D, Meloni A. Clinical application of magnetocardiography. Expert Rev Mol Diagn 2005;5:291-313. http://dx.doi.org/10.1586/14737159.5.3.291.
  • [21] Pena M, Pearson C, Goulet M, Kazan V, DeRita A, Szpunar S, et al. A 90-second magnetocardiogram using a novel analysis system to assess for coronary artery stenosis in emergency department observation unit chest pain patients. Int J Cardiol Heart Vasc 2020;26. http://dx.doi.org/10.1016/j.ijcha.2019.100466.
  • [22] Rea M, Boto E, Holmes N, Hill R, Osborne J, Rhodes N, et al. A 90-channel triaxial magnetoencephalography system using optically pumped magnetometers. Ann New York Acad Sci 2022;1517:107-24. http://dx.doi.org/10.1111/nyas.14890.
  • [23] Krzyzewski S, Perry A, Gerginov V, Knappe S. Characterization of noise sources in a microfabricated single-beam zero-field optically-pumped magnetometer. J Appl Phys 2019;126:044504. http://dx.doi.org/10.1063/1.5098088.
  • [24] Holmes N, Rea M, Hill RM, Leggett J, Edwards LJ, Hobson PJ, et al. Enabling ambulatory movement in wearable magnetoencephalography with matrix coil active magnetic shielding. NeuroImage 2023;274. http://dx.doi.org/10.1016/j. Neuroimage.2023.120157.
  • [25] Yin J, Chen JDZ. Electrogastrography: Methodology, validation and applications. J Neurogastroenterol Motility 2013;19:5-17. http://dx.doi.org/10.5056/jnm.2013.19.1.5.
  • [26] Nardelli N, Krzyzewski S, Knappe S. Reducing crosstalk in optically-pumped magnetometer arrays. Phys Med Biol 2019;64. http://dx.doi.org/10.1088/1361-6560/ab4c06.
  • [27] Wolpert N, Rebollo I, Tallon-Baudry C. Electrogastrography for psychophysiological research: Practical considerations, analysis pipeline, and normative data in a large sample. Psychophysiology 2020;57. http://dx.doi.org/10.1111/psyp.13599.
  • [28] Eichler CE, Cheng LK, Paskaranandavadivel N, Du P, Bradshaw LA, Avci R. Effects of magnetogastrography sensor configurations in tracking slow wave propagation. Comput Biol Med 2021;129:104169. http://dx.doi.org/10.1016/j. Compbiomed.2020.104169.
  • [29] Oostenveld R, Fries P, Maris E, Schoffelen J. FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci 2010;2011. http://dx.doi.org/10.1155/2011/156869.
  • [30] Leske S, Dalal S. Reducing power line noise in EEG and MEG data via spectrum interpolation. NeuroImage 2019;189:763-76. http://dx.doi.org/10.1016/j.neuroimage.2019.01.026.
  • [31] Haykin SS. Adaptive filter theory. Pearson Education India; 2002.
  • [32] López J, Tierney T, Sucerquia A, Valencia F, Holmes N, Mellor S, et al. Updating dynamic noise models with moving magnetoencephalographic (MEG) systems. IEEE Access 2019;7:10093-102. http://dx.doi.org/10.1109/ACCESS. 2019.2891162.
  • [33] Martínek R, Zidek J, Bilik P, Manas J, Koziorek J, Teng Z, et al. The use of LMS and RLS adaptive algorithms for an adaptive control method of active power filter. Energy Power Eng 2013;05:1126-33. http://dx.doi.org/10.4236/epe.2013.54B215.
  • [34] Yadav J, Kumar M, Saxena R, Ak J. Performance analysis of LMS adaptive FIR filter and RLS adaptive FIR filter for noise cancellation. Signal Image Process: Int J 2013;4:45-56.
  • [35] Dragomiretskiy K, Zosso D. Variational mode decomposition. IEEE Trans Signal Process 2014;62:531-44. http://dx.doi.org/10.1109/TSP.2013.2288675.
  • [36] Leske S, Dalal S. Reducing power line noise in EEG and MEG data via spectrum interpolation. NeuroImage 2019;189:763-76. http://dx.doi.org/10.1016/j.neuroimage.2019.01.026.
  • [37] Hill R, Boto E, Rea M, Holmes N, Leggett J, Coles L, et al. Multi-channel whole-head OPM-MEG: Helmet design and a comparison with a conventional system. NeuroImage 2020;219:116995. http://dx.doi.org/10.1016/j.neuroimage. 2020.116995.
  • [38] Gao Y, Ma D, Wang K, Xu X, Li S, Dou Y, et al. A low-noise multilayer mumetal thin shell magnetic shield for ultra-highly sensitive atomic sensors. Sensors Actuators A 2023;352:114207. http://dx.doi.org/10.1016/j.sna.2023.114207.
  • [39] Rea M, Holmes N, Hill R, Boto E, Leggett J, Edwards LJ, et al. Precision magnetic field modelling and control for wearable magnetoencephalography. NeuroImage 2021;241:118401. http://dx.doi.org/10.1016/j.neuroimage.2021.118401.
  • [40] Holmes N, Leggett J, Boto E, Roberts G, Hill R, Tierney T, et al. A biplanar coil system for nulling background magnetic fields in scalp mounted magnetoencephalography. Neuroimage 2018;181:760-74. http://dx.doi.org/10. 1016/j.neuroimage.2018.07.028.
  • [41] Irimia A, Bradshaw LA. Artifact reduction in magnetogastrography using fast independent component analysis. Physiol Meas 2005;26:1059-73. http://dx.doi.org/10.1088/0967-3334/26/6/015.
  • [42] Brookes M, Boto E, Rea M, Shah V, Osborne J, Holmes N, et al. Theoretical advantages of a triaxial optically pumped magnetometer magnetoencephalography system. NeuroImage 2021;236:118025. http://dx.doi.org/10.1016/j.neuroimage. 2021.118025.
  • [43] Palacios-García I, Parada FJ. Measuring the brain-gut axis in psychological sciences: A necessary challenge. Front Integr Neurosci 2019;13. http://dx.doi.org/10.3389/fnint.2019.00073.
  • [44] Azzalini D, Rebollo I, Tallon-Baudry C. Visceral signals shape brain dynamics and cognition. Trends Cogn Sci 2019;23 6:488-509. http://dx.doi.org/10.1016/j.tics.2019.03.007.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ca890656-f202-4834-8b4d-a35250116fd8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.