PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dynamic Garment Simulation based on Hybrid Bounding Volume Hierarchy

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to solve the computing speed and efficiency problem of existing dynamic clothing simulation, this paper presents a dynamic garment simulation based on a hybrid bounding volume hierarchy. It firstly uses MCASG graph theory to do the primary segmentation for a given three-dimensional human body model. And then it applies K-means cluster to do the secondary segmentation to collect the human body’s upper arms, lower arms, upper legs, lower legs, trunk, hip and woman’s chest as the elementary units of dynamic clothing simulation. According to different shapes of these elementary units, it chooses the closest and most efficient hybrid bounding box to specify these units, such as cylinder bounding box and elliptic cylinder bounding box. During the process of constructing these bounding boxes, it uses the least squares method and slices of the human body to get the related parameters. This approach makes it possible to use the least amount of bounding boxes to create close collision detection regions for the appearance of the human body. A spring-mass model based on a triangular mesh of the clothing model is finally constructed for dynamic simulation. The simulation result shows the feasibility and superiority of the method described.
Rocznik
Strony
241--249
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
autor
  • College of Science, Zhejiang Sci-Tech University, Hangzhou, China, 310018
autor
  • College of Science, Zhejiang Sci-Tech University, Hangzhou, China, 310018
autor
  • College of Science, Zhejiang Sci-Tech University, Hangzhou, China, 310018
autor
  • College of Science, Zhejiang Sci-Tech University, Hangzhou, China, 310018
Bibliografia
  • [1] Liu T, Bargteil A W, O’Brien J F, et al. Fast simulation of mass-spring systems[J]. ACM Transactions on Graphics (TOG), 2013, 32(6), 214.
  • [2] Wong T H, Leach G, Zambetta F. Modelling Bending Behaviour in Cloth Simulation Using Hysteresis[C]. Computer Graphics Forum. 2013, 32(8), 183-194.
  • [3] Kavan L, Gerszewski D, Bargteil A W, et al. Physics-inspired upsampling for cloth simulation in games[C]. ACM Transactions on Graphics (TOG). ACM, 2011, 30(4), 93.
  • [4] Provot X. Deformation constraints in a mass-spring model to describe rigid cloth behaviour [C]. Graphics interface. Canadian Information Processing Society, 1995, 147-147.
  • [5] Jakobsen T. Advanced character physics[C]. Game Developers Conference, 2001, 383-401.
  • [6] Miguel E, Tamstorf R, Bradley D, et al. Modeling and estimation of internal friction in cloth[J]. ACM Transactions on Graphics (TOG), 2013, 32(6), 212.
  • [7] Eberhardt B, Weber A, Strasser W. A fast, flexible, particle-system model for cloth draping[J]. Computer Graphics and Applications, IEEE, 1996, 16(5), 52-59.
  • [8] Volino P, Magnenat-Thalmann N. Comparing efficiency of integration methods for cloth simulation[C]. Computer graphics international 2001. Proceedings. IEEE, 2001, 265-272.
  • [9] Volino P, Magnenat-Thalmann N. Implicit midpoint integration and adaptive damping for efficient cloth simulation[J]. Computer Animation and Virtual Worlds, 2005, 16(3-4), 163-175.
  • [10] Baraff D, Witkin A. Large steps in cloth simulation[C]. Computer Graphics (SIGGRAPH’ 98), 1998, 43-54.
  • [11] Choi K J, Ko H S. Stable but responsive cloth[C]. ACM SIGGRAPH 2005 Courses. ACM, 2005, 1.
  • [12] Eberhardt B, Etzmuß O, Hauth M. Implicit-explicit schemes for fast animation with particle systems[M]. Springer Vienna, 2000.
  • [13] Bridson R, Marino S, Fedkiw R. Simulation of clothing with folds and wrinkles[C]. Proceedings of ACM SIGGRAPH/Eurographics symposium on Computer animation. Eurographics Association, 2003, 28-36.
  • [14] Li Z, Li L, Zou F. 3D foot and shoe matching based on OBB and AABB[J]. International Journal of Clothing Sciences & stechnology, 2013, 25(5), 389-399.
  • [15] Feng W, Yu Y, Kim B. A deformation transformer for real-time cloth animation[J]. Acm Transactions on Graphics, 2010, 29(4), 157-166.
  • [16] Bischoff S, Kobbelt L. Ellipsoid decomposition of 3D-models[C]. Proceedings of International Symposium on 3D Data Processing, Visualization and Transmission, 2002, 480-488.
  • [17] Bergen G. Efficient collision detection of complex deformable models using AABB trees[J]. Journal of Graphics Tools, 1997, 2(4), 1-13.
  • [18] Hutter M, Fuhrmann A. Optimized continuous collision detection for deformable triangle meshes[C]. In Proc. WSCG ’07, 2007, 25-32.
  • [19] Chang J W, Wang W, Kim M S. Efficient collision detection using a dual OBB-sphere bounding volume hierarchy[J]. Computer-Aided Design, 2010, 42(1), 50-57.
  • [20] Jagannathan A, Miller E L. Three-dimensional surface mesh segmentation using curvedness-based region growing approach[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(12), 2195-2204.
  • [21] Hartigan J A, Wong M A. Algorithm AS 136: A k-means clustering algorithm[J]. Applied Statistics, 1979: 100-108.
  • [22] Dyn N, Hormann K, Kim S J, et al. Optimizing 3D triangulations using discrete curvature analysis[J]. Mathematical methods for curves and surfaces, 2001, 135-146.
  • [23] Alexa M, Behr J, Cohen-Or D, et al. Computing and rendering point set surfaces[J]. IEEE Transactions on Visualization and Computer Graphics, 2003, 9(1), 3-15.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ca82f4c8-1401-4e72-9568-16dff2921e50
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.