PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of mixture composition on thermal properties of concrete and the performance of rigid pavements

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Wpływ składu mieszanki na właściwości termiczne betonu oraz parametry funkcjonalne nawierzchni sztywnych
Języki publikacji
PL EN
Abstrakty
PL
W najnowszym podręczniku mechanistyczno-empirycznego projektowania nawierzchni drogowych (MEPDG) przy analizie i projektowaniu nawierzchni sztywnych większy nacisk położono na uwzględnienie naprężeń wywołanych termicznym paczeniem się płyt betonowych. Skład mieszanki betonowej ma duży wpływ na parametry termiczne betonu, takie jak współczynnik przewodzenia ciepła, współczynnik rozszerzalności cieplnej oraz ciepło właściwe. W dużym stopniu zależą one od rodzaju i zawartości kruszywa. W stanie wilgotnym beton charakteryzuje się wyższym ciepłem właściwym oraz współczynnikiem przewodzenia ciepła. W artykule omówiono wpływ składu mieszanki na właściwości termiczne betonu stwardniałego, a także na właściwości w początkowym okresie twardnienia. Omówiono również wpływ, jaki na funkcjonalność nawierzchni sztywnych mają sezonowe i dobowe zmiany temperatury. W przypadku nawierzchni lotniskowych cykliczne oddziaływanie gorących spalin wyrzucanych przez silniki odrzutowe powoduje powstawanie mikrospękań, zwiększenie wielkości porów oraz pogorszenie wytrzymałości na ściskanie i na rozciąganie przy zginaniu. Beton poddawany cyklicznemu oddziaływaniu podwyższonej temperatury podlega niszczeniu, którego widoczne skutki przypominają skutki naprzemiennego zamrażania i rozmrażania.
EN
Th e recent mechanistic-empirical pavement design guide (MEPDG) put more emphasis on the effects of thermal curling stresses on rigid pavement analysis and design. Mix design of concrete has significant influence on its thermal properties such as thermal conductivity, coefficient of thermal expansion, and specific heat. Aggregate type and content significantly alter the thermal properties of concrete incorporating them. The moisture state of the concrete increases its specific heat and thermal conductivity. A review of the effect of temperature of fresh concrete on early age properties is also presented. The performance of rigid pavements exposed to seasonal and daily fluctuations in temperature is discussed. Airfield concrete pavements which are subjected to jet engine exhausts experience heat cycles micro-cracking, coarsening of microstructure and loss of compressive and flexural strength. These effects are mostly the result of the dehydration and decomposition of paste matrix in concrete. Heat cycles result in concrete deterioration similar in appearance to freezing and thawing deterioration.
Rocznik
Strony
235--260
Opis fizyczny
Bibliogr. 45 poz., rys., tab.
Twórcy
  • Purdue University, School of Civil Engineering, West Lafayette, IN, USA
autor
  • Instytut Podstawowych Problemów Techniki Polskiej Akademii Nauk, Warszawa
autor
  • Purdue University, School of Civil Engineering, West Lafayette, IN, USA
Bibliografia
  • [1] AASHTO Guide for Design of Pavement Structures. American Association of State Highway and Transportation Officials, Washington, 1986
  • [2] Mechanistic-Empirical Pavement Design Guide - A Manual of Practice. American Association of State Highway and Transportation Officials, Washington, 2008
  • [3] ASTM C177-13 Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate. ASTM International, West Conshohocken, 2013
  • [4] ASTM C1045-07 Standard Practice for Calculating Thermal Transmission Properties Under Steady-State Conditions. ASTM International, West Conshohocken, 2013
  • [5] ASTM C518-10 Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus. ASTM International, West Conshohocken, 2010
  • [6] ASTME1530-11 Standard Test Method for Evaluating the Resistance to Thermal Transmission ofMaterials by the Guarded Heat Flow Meter Technique. ASTM International, West Conshohocken, 2011
  • [7] ASTM E1952-11 Standard Test Method for Thermal Conductivity and Thermal Diffusivity by Modulated Temperature Differential Scanning Calorimetry. ASTM International, West Conshohocken, 2011
  • [8] AASHTO T336-11. Coefficient of Thermal Expansion of Hydraulic Cement Concrete. American Associationof State Highway and Transportation Officials, Washington, 2011
  • [9] AASHTO TP60-00. Coefficient of Thermal Expansion of Hydraulic Cement Concrete. American Associationof State Highway and Transportation Officials, Washington, 2000
  • [10] ASTM C531-00 Standard Test Method for Linear Shrinkage and Coefficient of Thermal Expansion of Chemical-Resistant Mortars, Grouts, Monolithic Surfacings, and Polymer Concretes. ASTM International, West Conshohocken, 2000
  • [11] ASTM C490-11 Standard Practice for Use of Apparatus for the Determination of Length Change of Hardened Cement Paste, Mortar, and Concrete. ASTM International, West Conshohocken, 2011
  • [12] ASTM D4611-08 Standard Test Method for Specific Heat of Rock and Soil. ASTM International, West Conshohocken, 2008
  • [13] ASTM D2766-95 Standard Test Method for Specific Heat of Liquids and Solids. ASTM International, West Conshohocken, 1995
  • [14] Zhang Y., Sun W., Liu S.: Study on the hydration heat of binder paste in high-performance concrete. Cement and Concrete Research, 32, 9, 2002, 1483-1488
  • [15] Nocuń-Wczelik W.: Heat evolution in hydrated cementitious systems admixtured with fly ash. Journal of Thermal Analysis and Calorimetry, 65, 2, 2001, 613-619
  • [16] Knor G., Glinicki M.A., Holnicki-Szulc J.: Determination of thermal parameters of hardening concrete by means of inverse problem solution. Roads and Bridges -Drogi i Mosty, 11, 4, 2012, 281-294
  • [17] Knor G., Glinicki M.A., Holnicki-Szulc J., Ossowski A., Ranachowski Z.: Influence of calcareous fly ash on the temperature of concrete in massive elements during the first 72 hours of hardening. Roads and Bridges - Drogi i Mosty, 12, 1,2013, 113-126
  • [18] U.S. Bureau of Reclamation, Concrete Manual, 8th edition, 1988
  • [18] Ghafoori N., Diawara H.: Influence of temperature on fresh performance of self-consolidating concrete. Construction and Building Materials, 24, 6, 2010, 946-955
  • [20] Neville A.M.: Properties of concrete. Fourth Edition John Wiley & Sons, Inc., New York, 1997
  • [21] Mackiewicz P.: Thermal stress analysis of jointed plane in concrete pavements. Applied Thermal Engineering, 73, 1,2014, 1167-1174
  • [22] Siwińska A., Garbalińska H.: Thermal conductivity coefficient of cement based mortars as air relative humidity function. Heat and Mass Transfer, 47, 9, 2011, 1077-1087
  • [23] Kim K.H., Jeon S.E., Kim J.K., Yang S.: An experimental study on thermal conductivity of concrete. Cement and Concrete Research, 33, 3, 2003, 363-371
  • [24] Jerman M., Keppert M., Vyborny J., Ćerny R.: Hygric, thermal and durability properties of autoclaved aerated concrete. Construction and Building Materials, 41,1, 2013,352-359
  • [25] Panesar D.K., Shindman B.: The mechanical, transport and thermal properties of mortar and concrete containing waste cork. Cement and Concrete Composites, 34, 9, 2012, 982-992
  • [26] Kim H.K., Jeon J.H., Lee H.K.: Workability, and mechanical, acoustic and thermal properties oflightweight aggregate concrete with a high volume of entrained air. Construction and Building Materials, 29,2012,193-200
  • [27] Khaliq W., Kodur V.: Thermal and mechanical properties of fiber reinforced high performance self-consolidating concrete at elevated temperatures. Cement and Concrete Research, 41, 11,2011, 1112-1122
  • [28] Loser R., Munch B., Lura P.: A volumetric technique for measuring the coefficient of thermal expansion of hardening cement paste and mortar. Cement and Concrete Research, 40, 7, 2010, 1138-1147
  • [29] Sellevold E.J., Bjontegaard 0.: Coefficient of thermal expansion of cement paste and concrete: Mechanisms of moisture interaction. Materials and Structures, 39,9, 2006, 809-815
  • [30] Rajabipour F., Weiss J.: Electrical conductivity of drying cement paste. Materials and Structures, 40, 10, 2006, 1143-1160
  • [31] Bjontegard O., Sellevold E.J.: Interaction between thermal dilation and autogenous deformation in high performance concrete. Materials and Structures, 34, 5, 2001, 266-272
  • [32] Yeon J.H., Choi S., Won M.C.: In situ measurement of coefficient of thermal expansion in hardening concrete and its effect on thermal stress development. Construction and Building Materials, 38, 2013, 306-315
  • [33] Fu X., Chung D.D.L. : Effects of silica fume, latex, methylcellulose, and carbon fibers on the thermal conductivity and specific heat of cement paste. Cement and Concrete Research, 27, 12, 1997, 1799-1804
  • [34] Zhang D., Li Z., Zhou J., Wu K.: Development of thermal energy storage concrete. Cement and Concrete Research, 34, 6, 2004, 927-934
  • [35] Pomianowski M., Heiselberg P., Jensen R.L., Cheng R., Zhang Y.: A new experimental method to determine specific heat capacity of inhomogeneous concrete material with incorporated microencapsulated-PCM. Cement and Concrete Research, 55, 2014, 22-34
  • [36] Kodide U., Shin A.H.: Effects of thermal properties on temperature and moisture profiles, and the performance of PCC pavements. Journal of Engineering and Applied Sciences, 6, 12, 2011, 88-96
  • [37] Chung Y.: Thermal stress analysis of jointed plain concrete pavements containing fly ash and slag. PhD Thesis, Louisiana State University, 2012
  • [38] Nantung T.: High Performance Concrete Pavement in Indiana. Joint Transportation Research Program, SPR-2642, Report No. FHWA/IN/JTRP-2011/20,2011
  • [39] Zhu B.: Thermal Stresses in Fixed Slab or Free Slab, in: Thermal Stresses and Temperature Control of Mass Concrete. Tsinghua University Press, 2014, 121-142
  • [40] Yehia S., Landolsi T., Hassan M., Hallal M.: Monitoring of strain induced by heat of hydration, cyclic and dynamic loads in concrete structures using fiber-optics sensors. Measurement, 52, 2014, 33-46
  • [41] Zou X., Chao A., Tian Y., Wu N., Zhang H., Yu T.Y., WangX.: An experimental study on the concrete hydra-tion process using Fabry-Perot fiber optic temperature sensors. Measurement, 45, 5, 2012, 1077-1082
  • [42] Linek M., Nita P.: Thermal effects on airfield surfaces. 9-th European conference of young research and scientific workers. University of Żilina, Slovak Republic, Transcom 2011, 7, 2011, 85-88
  • [43] Campbell-Allen D., Desai P.M.: The influence of aggregate on the behaviour of concrete at elevated temperatures. Nuclear Engineering and Design, 6,1,1967,65-77
  • [44] Bier T.A., Wise S., Chang P. : A mechanistic study of failure of concrete subjected to cyclic thermal loads. Naval Civil Engineering Laboratory, CR 91.008, Port Hueneme, CA 93043, USA, 1991
  • [45] Sullivan P.J., Poucher M.P.: The influence of temperature on the physical properties of concrete and mortar in the range 20°Cto 400°C. American Concrete Institute Special Publication, 25, 1971, 103-136
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ca81b598-ba81-4426-b2b9-e288d209339a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.