PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cuban consumer price index forecasting through transformer with attention

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Recently, time series forecasting modelling in the Con‐ sumer Price Index (CPI) has attracted the attention of the scientific community. Several research projects have tackled the problem of CPI prediction for their countries using statistical learning, machine learning and deep neural networks. The most popular approach to CPI in several countries is the Autoregressive Integrated Mov‐ ing Average (ARIMA) due to the nature of the data. This paper addresses the Cuban CPI forecasting problem using Transformer with attention model over univariate dataset. The fine tuning of the lag parameter shows that Cuban CPI has better performance with small lag and that the best result was in 𝑝 = 1. Finally, the comparative results between ARIMA and our proposal show that the Transformer with attention has a very high performance despite having a small data set.
Twórcy
  • Universidad de las Ciencias Informáticas, Cuba
  • Universidad de las Ciencias Informáticas, Cuba
  • Universidad de las Ciencias Informáticas, Cuba
  • Universidad de las Ciencias Informáticas, Cuba
  • Universidad de las Ciencias Informáticas, Cuba
Bibliografia
  • [1] A. Banerjee. “Forecasting price levels in india–anarima framework”, Academy of Marketing Studies ournal, vol. 25, no. 1, 2021, 1–15.
  • [2] J. Brownlee, Deep learning for time series forecasting: predict the future with MLPs, CNNs and LSTMs in Python, Machine Learning Mastery, 2018.
  • [3] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. “Empirical evaluation of gated recurrent neural networks on sequence modeling”. In: NIPS 2014 Workshop on Deep Learning, December 2014, 2014.
  • [4] S. Du, T. Li, Y. Yang, and S.‐J. Horng. “Multivariate time series forecasting via attention‐based encoder–decoder framework”, Neurocomputing, vol. 388, 2020, 269–279.
  • [5] J. M. García Molina, La economía cubana a inicios del siglo XXI: desaϔíos y oportunidades de la globalización, CEPAL, 2005.
  • [6] A. Ghazo et al. “Applying the arima model to the process of forecasting gdp and cpi in the jordanian economy”, International Journal of Financial Research, vol. 12, no. 3, 2021, 70.
  • [7] S. Jere, A. Banda, R. Chilyabanyama, E. Moyo, et al. “Modeling consumer price index in zambia: a comparative study between multicointegration and arima approach”, Open Journal of Statistics, vol. 9, no. 02, 2019, 245.
  • [8] L. M. León Anaya, V. M. Landassuri Moreno, H. R. Orozco Aguirre, and M. Quintana López. “Predicción del ipc mexicano combinando modelos econométricos e inteligencia artificial”, Revista mexicana de economía y ϔinanzas, vol. 13, no. 4, 2018, 603–629.
  • [9] J. Li, Y. Vidyattama, H. A. La, R. Miranti, and D. M. Sologon. “Estimating the impact of covid‐19 and policy responses on australian income distribution using incomplete data”, Social Indicators Research, vol. 162, no. 1, 2022, 1–31.
  • [10] B. Lim, and S. Zohren. “Time‐series forecasting with deep learning: a survey”, Philosophical Transactions of the Royal Society A, vol. 379, no. 2194, 2021, 20200209.
  • [11] B. Lindemann, T. Müller, H. Vietz, N. Jazdi, and M. Weyrich. “A survey on long short‐term memory networks for time series prediction”, Procedia CIRP, vol. 99, 2021, 650–655.
  • [12] I. Loshchilov, and F. Hutter. “Decoupled weight decay regularization”, arXiv preprint arXiv:1711.05101, 2017.
  • [13] D. P. Manik et al. “A strategy to create daily consumer price index by using big data in statistics indonesia”. In: 2015 International Conference on Information Technology Systems and Innovation (ICITSI), 2015, 1–5.
  • [14] T. Mikolov, M. Karafiát, L. Burget, J. Černockỳ, and S. Khudanpur. “Recurrent neural network based language model”. In: Eleventh annual conference of the international speech communication association, 2010.
  • [15] J. Mohamed. “Time series modeling and forecasting of somaliland consumer price index: a comparison of arima and regression with arima errors”, American Journal of Theoretical and Applied Statistics, vol. 9, no. 4, 2020, 143–53.
  • [16] T. Nyoni. “Modeling and forecasting inflation in kenya: Recent insights from arima and garch analysis”, Dimorian Review, vol. 5, no. 6, 2018, 16–40.
  • [17] T. Nyoni. “Arima modeling and forecasting of consumer price index (cpi) in germany”, 2019.
  • [18] ONEI. “Índice de precios al consumidor base diciembre 2010”, 2022.
  • [19] J. Riofrío, O. Chang, E. Revelo‐Fuelagán, and D. H. Peluffo‐Ordóñez. “Forecasting the consumer price index (cpi) of ecuador: A comparative study of predictive models”, International Journal on Advanced Science, Engineering and Information Technology, vol. 10, no. 3, 2020, 1078–1084.
  • [20] R. A. G. Rodríguez. “La visión estructuralista de la inflación. primeras aproximaciones para cuba.”, 2017.
  • [21] R. Rosado, A. J. Abreu, J. C. Arencibia, H. Gonzalez, and Y. Hernandez. “Consumer price index forecasting based on univariate time series and a deep neural network”. In: International Workshop on Artiϔicial Intelligence and Pattern Recognition, 2021, 33–42.
  • [22] I. Sutskever, O. Vinyals, and Q. V. Le. “Sequence to sequence learning with neural networks”, Advances in neural information processing systems, vol. 27, 2014.
  • [23] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin. “Attention is all you need”, Advances in neural information processing systems, vol. 30, 2017.
  • [24] W. Wibowo, T. Purwa, E. N. A. Bahri, B. S. S. Ulama, and R. N. Wilantari. “Impacts of earthquakes on consumer price index and inflation: A case study in west nusa tenggara province, indonesia”. In: Journal of Physics: Conference Series, vol. 1863, no. 1, 2021, 012062.
  • [25] R. J. Williams, and D. Zipser. “A learning algorithm for continually running fully recurrent neural networks”, Neural computation, vol. 1, no. 2, 1989, 270–280.
  • [26] S. Zahara, M. Ilmiddaviq, et al. “Consumer price index prediction using long short term memory (lstm) based cloud computing”. In: Journal of Physics: Conference Series, vol. 1456, no. 1, 2020, 012022.
  • [27] B. Zhang, G. Zou, D. Qin, Y. Lu, Y. Jin, and H. Wang. “A novel encoder‐decoder model based on read‐first lstm for air pollutant prediction”, Science of The Total Environment, vol. 765, 2021, 144507.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ca7fb1d1-5121-4e59-aaa8-9c5d6f0c47b6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.