PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Pneumatic single flapper nozzle valve driven by piezoelectric tube

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Zawór pneumatyczny typu dysza przysłona z rurką piezoelektryczną jako elementem zadającym
Języki publikacji
EN
Abstrakty
EN
The article presents a construction, static testing and modelling of a single flapper nozzle pneumatic valve. Authors show testing of piezo tube PT230 which distinguishing feature is deflection in two directions. This testing is preliminary work in design of a novel electropneumatic valve. Studies have been performed on a special designed bench which consists of a pneumatic valve, which used piezo tube as a flapper. Data acquisition process and control were performed by dSPACE system. The preformed static pressure control tests, confirmed applicability of tube actuator in flapper nozzle type valves. Obtained results were compared with simulation model prepared in Matlab Simulink software.
PL
Artykuł zawiera opis konstrukcji, badania statyczne i modelowanie zaworu typu dysza przysłona. Autorzy zaprezentowali badania piezo rurki model PT230, której cechą charakterystyczną jest możliwość odkształcenia w dwóch kierunkach. Praca ta jest przygotowaniem do konstrukcji nowego zaworu elektropneumatycznego. Badania zostały wykonane na specjalnie w tym celu wykonanym stanowisku zawierającym zawór, którym zastosowano piezo rurkę jako przysłonę. Procesy akwizycji danych oraz sterowania wykonane zostały w systemie dSPACE. Przeprowadzone badania statyczne sterowania ciśnieniem wyjściowym, potwierdzają możliwość zastosowania piezo rurki w zaworach typu dysza przysłona. Zarejestrowane wyniki poddano porównaniu z modelem przygotowanym w oprogramowaniu Matlab Simulink.
Rocznik
Strony
13--19
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
autor
  • Poznan University of Technology, Division of mechatronics devices, ul. Piotrowo 3, 60-695 Poznań
autor
  • Poznan University of Technology, Division of mechatronics devices, ul. Piotrowo 3, 60-695 Poznań
  • Poznan University of Technology, Division of mechatronics devices, ul. Piotrowo 3, 60-695 Poznań
Bibliografia
  • [1] R.H. Maskrey, W.J. Thayer, „A brief history of electrohydraulic servomechanisms”, ASME Journal of Dynamic Systems Measurement and Control, June 1978
  • [2] H.E. Merritt, “Hydraulic Control Systems”, John Wiley & Sons, Inc., 1967
  • [3] J.S. Cundiff, „Fluid Power Circuts and Control”, CRC Press, 2002
  • [4] M. Galal Rabie, „Fluid Power Engineering”, Mc Graw Hill, 2009
  • [5] Janocha H., Actuators Basics and Applications, Springer, Berlin (2004)
  • [6] Minorowicz B., Nowak A., Stefański F., Position regulation of magnetic shape memory actuator, Journal of Achievements in Materials and Manufacturing Engineering, 61/2 (2013), 216-221
  • [7] Mohd Jani J., Learya M., Subica A., Gibsonc M. A., A review of shape memory alloy research, applications and opportunities, Materials&Design, 56 (2014), 1078-1113
  • [8] Gradin H., Clausi D., Braun S., Stemme G., Peirs J., van der Wijngaart W., Reynaerts D., A low-power high-flow shape memory alloy wire gas microvalve, Journal of Micromechanics and Microengineering, 22/7 (2012), 1-10
  • [9] Tiboni M., Borboni A., Mor M., Pomi D., An innovative pneumatic mini-valve actuated by SMA Ni-Ti wires: design and analysis, Journal of Systems and Control Engineering, 225/3 (2011), 443-451
  • [10] Flaga S., Pluta J., Sapiński B., Pneumatic Valves Based on Magnetic Shape Memory Alloys: Potential Applicatins, Acta Monostatica Slovaca, 16 (2011), 34-38
  • [11] Suorsa I., Tellinen I., Pagounis E., Aaltio I., Ullakko K., Applications of Magnetic Shape Memory Actuators, International Conference on New Actuators and Drives ACTUATOR02, Bremen (2002), 158-161
  • [12] Flaga S., Sioma A., Characteristics of Experimental MSMABased Pneumatic Valves, Proceedings of SMASIS-2013, ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Snowbird (2013), Paper No. SMASIS2013-3323, V001T04A016
  • [13] Giousouf M., Kovacs G., Dielectric elastomer actuators used for pneumatic valve technology, Smart Materials and Structures, 22 (2013), 1-6
  • [14] Choi S. B., Yoo J. L., Pressure control of a pneumatic valve system using a piezoceramic flapper, Journal of Mechanical Engineering Science, 218/83 (2004), 83-91
  • [15] Milecki A., MODELLING AND INVESTIGATIONS OF ELECTROHYDRAULIC SERVO VALVE WITH PIEZO ELEMENT, Archiwum Technologii Maszyn i Automatyzacji, 26/2 (2006), 181-184
  • [16] Sędziak D., BASIC INVESTIGATIONS OF ELECTROHYDRAULIC SERVOVALVE WITH PIEZO-BENDER ELEMENT, Archiwum Technologii Maszyn i Automatyzacji, 25/2 (2006), 185-190
  • [17] Jeon J., Maeng Y-J, Choi S-B., Hong S-M., Lee S-J., PRESSURE CONTROL OF A VALVE MODULATOR USING A PIEZOACTUATOR FOR VEHICLE ABS, The 17th International Congress on Sound & Vibration, Cairo Egypt, July 2010, 1-8
  • [18] Zhou M., Gao W., Yang Z., Stiffness analysis of electromechanical transducer for nozzle flapper piezoelectric servo valve, Przegląd Elektrotechniczny 9b (2012), 196-199
  • [19] Sangiah D.K., Plummer A.R., Bowen C.R., Guerrier P., A novel piezohydraulic aerospace servovalve. Part 1: design and modelling. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 227/4 (2013), 371-389
  • [20] Changbin G., Zongxia J., A piezoelectric direct-drive servo valve with a novel multi-body contacting spool-driving mechanism: Design, modelling and experiment. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 228/1 (2014), 169-185
  • [21] Sente P.A., Labrique F.M., Alexandre P.J., Efficient control of a piezoelectric linear actuator embedded into a servo-valve for aeronautic applications. Industrial Electronics, IEEE Transactions on, 59/4 (2012), 1971-1979
  • [22] Karunanidhi S., Singaperumal M., Mathematical modelling and experimental characterization of a high dynamic servo valve integrated with piezoelectric actuator. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 224/4(2010), 419-435
  • [23] Karunanidhi S., Singaperumal M., (2010). Design, analysis and simulation of magnetostrictive actuator and its application to high dynamic servo valve. Sensors and Actuators A: Physical, 157/2 (2010), 185-197
  • [24] Gang B., Tinghai C., Yao H., Xiangdong G., Han G., A nozzle flapper electro-pneumatic proportional pressure valve driven by piezoelectric motor, International Conference Fluid Power and Mechatronics, Beijing (2011), 191-195
  • [25] Choi S.B., Yoo J.K., Pressure control of a pneumatic valve system using a piezoceramic flapper. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 218/1 (2004), 83-91
  • [26] C.J. Chen, „Electromechanical deflections of piezoelectric tubes with quartered electrodes”, Applied Physics Letters 60 , 132 (1992)
  • [27] M. Mohammadzaheri, S. Grainger, M. Bazghaleh, “A system identification approach to the characterization and control of a piezoelectric tube actuator”, Smart Materials and Structures, 22 (2013)
  • [28] C.J. Jermak, “Teoretyczne I praktyczne aspekty kształtowania statycznych właściwości metrologicznych pneumatycznych przetwornikóa. długości”, Wydawnictwo Politechniki Poznańskiej, 2012
  • [29] G.W. Howell, T.M. Weathers, “Aerospace Fluid Component Designers’ Handbook”, TRW Systems Group, 1970
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ca7e2f3e-1177-41f5-85f0-ae26e555887f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.