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An artificial neural network model supported with multi criteria 
decision making approaches for maintenance planning 

in hydroelectric power plants

Planowanie utrzymania ruchu w elektrowniach wodnych 
w oparciu o model sztucznej sieci neuronowej 

wsparty wielokryterialnymi metodami podejmowania decyzji
Power plants are the large-scale production facilities with the main purpose of realizing uninterrupted, reliable, efficient, econom-
ic and environmentally friendly energy generation. Maintenance is one of the critical factors in achieving these comprehensive 
goals, which are called as sustainable energy supply. The maintenance processes carried out in order to ensure sustainable energy 
supply in the power plants should be managed due to the costs arising from time requirement, the use of material and labor, and the 
loss of generation. In this respect, it is critical that the fault dates are forecasted, and maintenance is performed without failure in 
power plants consisting of thousands of equipment. In this context in this study, the maintenance planning problem for equipment 
with high criticality level is handled in one of the large-scale hydroelectric power plants that meet the quintile of Turkey’s energy 
demand as of the end of 2018. In the first stage, the evaluation criteria determined by the power plant experts are weighted by the 
Analytical Hierarchy Process (AHP), which is an accepted method in the literature, in order to determine the criticality levels of 
the equipment in terms of power plant at the next stage. In order to obtain the final priority ranking of the equipment in terms of 
power plant within the scope of these weights, Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) is used 
because of its advantages compared to other outranking algorithms. As a result of this solution, for the 14 main equipment groups 
with the highest criticality level determined on the basis of the power plant, periods between two breakdowns are estimated, and 
maintenance planning is performed based on these periods. In the estimation phase, an artificial neural network (ANN) model has 
been established by using 11-years fault data for selected equipment groups and the probable fault dates are estimated by con-
sidering a production facility as a system without considering the sector for the first time in the literature. With the plan including 
the maintenance activities that will be carried out before the determined breakdown dates, increasing the generation efficiency, 
extending the economic life of the power plant, minimizing the generation costs, maximizing the plant availability rate and maxi-
mizing profit are aimed. The maintenance plan is implemented for 2 years in the power plant and the unit shutdowns resulting from 
the selected equipment groups are not met and the mentioned goals are reached.

Keywords:	 Artificial neural networks, hydroelectric power plants, failure period estimation, maintenance plan-
ning, AHP, TOPSIS.

Elektrownie to zakłady produkcyjne o dużej skali, których głównym celem jest nieprzerwane, niezawodne, wydajne, rentowne 
oraz przyjazne dla środowiska wytwarzanie energii. Utrzymanie ruchu stanowi jeden z kluczowych czynników pozwalających 
na osiągnięcie tych szeroko zakrojonych celów, które określa się wspólnym mianem zrównoważonych dostaw energii. W ele-
ktrowniach, procesami utrzymania ruchu, realizowanymi w celu zapewnienia zrównoważonych dostaw energii, zarządza się  
z uwzględnieniem kosztów związanych z wymogami czasowymi, kosztów materiałów i robocizny oraz strat wytwarzania energii. 
Ponieważ elektrownie wykorzystują tysiące różnych urządzeń, niezwykle ważne jest prognozowanie dat wystąpienia uszkodzeń 
oraz zapewnienie bezawaryjnego utrzymania ruchu. W przedstawionych badaniach, rozważano problem planowania utrzyma-
nia ruchu sprzętu o wysokim poziomie krytyczności na przykładzie jednej z dużych elektrowni wodnych, która na koniec 2018 
r. pokrywała jedną piątą zapotrzebowania Turcji na energię elektryczną. W pierwszym etapie badań, kryteria oceny określone 
przez ekspertów zatrudnionych w elektrowni ważono za pomocą powszechnie stosowanej w literaturze metody procesu hierarchii 
analitycznej (AHP) w celu ustalenia poziomów krytyczności poszczególnych elementów wyposażenia elektrowni. Aby opracować 
ostateczny ranking priorytetowości elementów wyposażenia elektrowni na podstawie określonych wcześniej wag, zastosowano 
technikę TOPSIS, która polega na porządkowaniu preferencji na podstawie podobieństwa do idealnego rozwiązania. Techniki tej 
użyto ze względu na jej zalety, których nie mają inne algorytmy oparte na relacji przewyższania (ang. outranking algorithms). Na 
podstawie wyników otrzymanych dla 14 głównych grup urządzeń o najwyższym poziomie krytyczności, określonym na podstawie 
danych pochodzących z elektrowni, oszacowano czasy pomiędzy dwiema awariami, a na ich podstawie zaplanowano działania 
konserwacyjne. W fazie szacowania, opracowano model sztucznej sieci neuronowej (ANN) w oparciu o dane o uszkodzenia-
ch, które wystąpiły w ostatnich 11 latach działania elektrowni, dla wybranych grup urządzeń. Przewidywane daty wystąpienia 
uszkodzeń szacowano, po raz pierwszy w literaturze, biorąc pod uwagę zakład produkcyjny jako system, bez uwzględnienia sektora 
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produkcyjnego. Plan obejmuje działania konserwacyjne, które mają być przeprowadzone przed przewidywanymi datami awarii, 
w celu zwiększenia wydajności wytwarzania energii, przedłużenia żywotności elektrowni, minimalizacji kosztów wytwarzania 
energii, maksymalizacji wskaźnika dostępności elektrowni oraz maksymalizacji zysków. Opracowany plan konserwacji wdrażano  
w omawianej elektrowni przez 2 lata. W tym okresie nie odnotowano przerw w pracy jednostek wytwórczych spowodowanych 
awarią rozważanych grup urządzeń, co oznacza, że wspomniane cele zostały osiągnięte.

Słowa kluczowe:	 sztuczne sieci neuronowe, elektrownie wodne, szacowanie czasu między uszkodzeniami,  
planowanie utrzymania ruchu, AHP, TOPSIS.

1. Introduction

In today’s conditions where competition is increasing, enterprises 
need to increase their profitability in order to ensure their continuity 
in their activities or to include plans aimed at minimizing the total cost 
resulting from these activities. These plans are of great importance 
in order to manage the operational activities that can be classified 
under the titles of production, personnel, material and maintenance 
in a systematic and effective manner. Especially in order to realize 
these targets, it is critical that the machinery, equipment and devices 
in the production facilities perform the expected functions in a timely, 
uninterrupted, high quality and reliable manner. In this respect, plan-
ning of the maintenance activities contributes greatly to the effective 
management of the other three main processes (production, personnel 
and material), while systematic management of maintenance planning 
activities plays an important role in achieving improvements in opera-
tional efficiency. 

Besides contributions provided by the mentioned maintenance 
planning activities, it is necessary to optimize all the costs in accord-
ance with the operating conditions as maintenance costs can reach 15-
70% of the various production costs varying according to the type of 
operation [11]. According to the most commonly used method, main-
tenance cost is composed of labor, spare parts and service costs which 
are spent for maintenance [19]. In case of stoppages caused by mal-
function or any maintenance application in the enterprise, the losses 
for each time period in which production cannot be realized should be 
considered as cost and included in the management process. The most 
important point to be considered here is the monitoring, inspection 
and follow-up taking them under control of maintenance performance 
parameters such as the mean time between failures (MTBF), failure 
stop rate (FSR) and fault repair time (FRT). Recording the data in 
which the maintenance performance indicators are mentioned in the 
maintenance practices realized by the enterprises is one of the impor-
tant factors that will contribute to this process. 

At the same time, hydroelectric power plants are critical with 
about one fifth share in Turkey’s energy mix [21]. Therefore, a large-
scale hydroelectric power plant in Turkey is selected as application 
field, and this plant has 6,111 equipment. It is not possible to carry out 
maintenance so many equipment in terms of continuity of generation 
and minimization of the costs. In fact, every equipment in the power 
plant does not directly affect sustainable energy generation. In other 
words, the level of impact of equipment on sustainable energy supply 
can be expressed as the level of risk (criticality level) of equipment 
in terms of power plant. For this reason, prioritization of maintenance 
activities according to criticality levels of equipment would not be 
deviated the power plant from its sustainable energy supply goal but 
would serve this comprehensive purpose. Furthermore, considering 
that the purpose of the maintenance is to extend the time of the fault-
free operation of the equipment, it will be possible for an equipment 
to reach this goal in the most appropriate way (especially in terms 
of cost efficiency) by the maintenance before the possible downtime. 
From this point of view in this study, a new maintenance planning 
methodology is proposed for the efficient maintenance management 
and hence an efficient power plant management, which includes the 
maintenance performance indicators in a big-scale hydroelectric pow-

er plant with the aim of achieving continuous, reliable, efficient, eco-
nomic and environmentally friendly electricity generation [58]. 

First, 9 criteria which affect the criticality level of the equipment 
in the power plant are weighted by AHP, and the obtained weights are 
used in TOPSIS algorithm for calculating the risk levels of equipment 
in terms of sustainable energy supply in the power plant. It is deter-
mined that 14 equipment groups have the maximum risk level in this 
ranking obtained for 6,111 equipment. This calculation is consistent 
with real life in terms of threatening the uninterrupted, reliable, effi-
cient, economic and environmentally friendly power generation when 
14 equipment groups fail. Then, an ANN model is established by us-
ing 11-years fault data including maintenance performance indicators 
for selected equipment groups and possible fault dates are estimated, 
and maintenance schedule is based on the estimated date of the failure 
for each equipment for the first time in the literature. As a result of 
the implementation of this schedule in the power plant for 2 years, the 
generation stoppages resulting from the lack of maintenance in the se-
lected equipment groups are reduced by 100%. In addition, increasing 
the generation efficiency, extending the economic life of the power 
plant, minimization of generation costs, maximization of power plant 
availability and profit maximization are achieved. 

In the second section of the study, the studies in literature about 
the problem in a broad perspective are included. In the third section, 
the methods used in the study are given with use case and the applica-
tion phase is described in section 4. The study is completed with sec-
tion 5 where the results and recommendations are presented. 

2. Related literature

Multi-Criteria Decision Making (MCDM) is an approach that 
makes decision-making more effective when there are often con-
flicting and/or related, qualitative and quantitative criteria [31]. The 
fact that the problem parameters are qualitative or quantitative in the 
decision-making process and that these parameters should be evalu-
ated together make the MCDM a practical and comprehensive evalu-
ation strategy. For this reason, in many studies in the literature, many 
MCDM methods, such as AHP [33,39,77], Analytic Network Proc-
ess (ANP) [73], TOPSIS [10], ELimination Et Choix Traduisant la 
REalité (ELECTRE) [24], Preference Ranking Organization Method 
for Enrichment Evaluation (PROMETHEE) [9] and Vlsekriterijum-
ska Optimizacija I KOmpromisno Resenje (VIKOR) [26] are used 
in different problem areas such as location [36], project [44,66], staff 
[4], supply chain [81] and strategy selection [15], and health appli-
cations [47]. Furthermore, energy related decision-making problems 
have also intrinsically multiple criteria structures and therefore, ana-
lytical approaches for effective solutions for these problems are need-
ed. In this context and within the frame of the advantages of MCDM 
stated above, this approach provides effective results in solving many 
problems related with energy. Especially, the reviews performed by 
Mardani et al. [50] and Kumar et al. [40] have proved the importance 
of the MCDM to be very important for the problems in energy related 
studies. Another point that is noteworthy is that the usage of method 
combinations composed of one more than techniques under MCDM 
approach for problem solving have enabled us to receive effective 
results. For example, Zyoud and Fuchs-Hanusch [92] have proved 
that the studies in which AHP and TOPSIS which are also used in 
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this study are integrated, are more effective than the separate usage of 
the methods. The studies performed by Özcan et al. [58] and Kumar 
et al. [41] in the hydroelectric power plants, and Sindhu et al. [72] in 
the solar power plant are the important studies that integrate these 
two methods. In this study, the solution is started with AHP method 
due to the subjectivity reduction, ease of application, widespread use 
and flexibility of integration with linear programming, fuzzy logic 
and especially sorting algorithms [39,77,82]. In the second phase, 
the TOPSIS method is preferred because of the easy and effective 
way to perform the alternative ranking [10]. Another method used in 
the study, the ANN is used together with these MCDM methods in a 
few studies in the literature [8,42,76,84]. Today, ANN frequently en-
countered among artificial intelligence methods such as fuzzy logic, 
genetic algorithms etc. is used for solving the many types of problems 
about classification [46,90], diagnostics [3,91], scheduling [45] and 
prediction [2,80,89] in the wide sectoral range such as atmospheric 
sciences [23], transportation [20], finance [87], health [69] and en-
ergy [37]. 

Recently, prediction studies focused on ANN [70,89] and obtain-
ing effective results is one of the factors that highlight this method. 
In addition, traditional prediction methods have been sufficient due 
to the long-term linear problems in the prediction studies in previous 
years [13,59]. Nowadays it is not reasonable to assume that the prob-
lems are linear because of the dynamic and variable structure of real-
life problems [25]. Therefore, these methods are incomplete in some 
respects in nonlinear problems. In contrast to the traditional prediction 
models, ANN models learn the structure of the problem from histori-
cal data on the problem and captures a fine functional relationship 
between the parameters even if the problem is difficult. This is the 
most important feature of ANN models, which shows their superior-
ity compared to traditional ones in nonlinear problems. Therefore, the 
use of ANN models is more effective for problems that are especially 
difficult to solve where sufficient data or observation can be obtained 
[18,62,86]. In addition, it is necessary to transfer large amounts of 
data from the system examined in deep learning applications [61]. 
However, there are 285 faults in the hydroelectric power plants, where 
the problem is addressed, in the 11-year period. While this size of data 
set is insufficient for deep learning methods, it is sufficient for ANN 
method. Therefore, ANN method was preferred in this study inste-
ad of both traditional statistical methods and deep learning methods. 
Energy-related problems are often complex, and therefore the ANN 
method is used effectively in forecasting problems related to ener-
gy. The literature reviews performed by Suganthi and Samuel [74] on 
electricity demand, Weron [85] on electricity prices, and Wang and 
Srinivasan [83] on energy usage, evidence by the fact that the ANN is 
frequently used in the energy related studies.

ANN can learn the process based on historical data and obtain 
highly accurate estimation results even if changes occur in the proc-
ess [55]. In addition, the applications of artificial intelligence, includ-
ing the ANN, in power plants aim to minimize human intervention 
in processes. In other words, these practices aim to reduce the de-
pendence on staff in all process management, including maintenance 
planning, because of the threats that they may cause [51]. As a result 
of these objectives and the advantages mentioned above, ANN has 
taken place in the maintenance planning problem in the energy sector. 
Examples of maintenance planning literature in the energy sector are 
summarized below:

Messai et al. [53] performed a system design that forecasts the 
temperature of the fuel rod temperature sensor in the nuclear reactor 
core by a Bayesian Network, which is a special ANN model. Ayo-
deji et al. [6] assessed the performance of the simulation with two 
ANN models predicting the location and size of the fault before the 
malfunction occurred in the operator support system. As with these 
studies, ANN models not only use environmental variables such as 
outdoor temperatures or radiation, but also the condition variables of 

the equipment as internal temperature for different operating times. 
In this way, faults can be detected before affecting production and 
a quantitative risk measurement can be realized. From this point of 
view, Polo et al. [57] made the malfunction mode and energy pro-
duction estimation of critical equipment for photovoltaic power plant 
with ANN.

Most of the maintenance planning studies carried out with ANN 
in the renewable energy field are carried out in wind power plants 
which are advantageous due to simple production structure accord-
ing to other renewable energy plants. The study of Schlechtingen and 
Santos [67], which deals with offshore wind turbines, is based on the 
Supervisory Control and Data Acquisition (SCADA) data of 10 wind 
turbines of the same type with 2 MW installed capacity. By using 
these data, two different ANN models are constructed for fault es-
timation and the results are compared. Faults are evaluated as first 
and second faults on a day-by-day basis and temperature values are 
estimated. Based on these estimations, the fault is detected at the earli-
est 50 days ago. Kusiak and Li [43], the other researchers working on 
the estimation of faults, estimated the failures in three phases based 
on data from SCADA of 4 wind turbines. In this study, the first stage 
is to determine the presence of the fault, the second stage is the esti-
mate of the severity of the fault and the final stage is the specific fault 
estimation. Three-phase fault estimation is modeled by using Neural 
Network (NN), Neural Network Ensemble (NN Ensemble), Boosting 
Tree Algorithm (BTA) and Support Vector Machine (SVM) methods 
and it was able to find the problem 5-60 minutes before failure oc-
curred. Another study on wind turbines is performed by Chen et al. 
[16]. In this study, Adaptive-Network Based Fuzzy Inference Systems 
(ANFIS) which is a smart approach to classify faults in wind turbines 
is used unlike fault estimation. There are other studies using the AN-
FIS method. The second study of Schlechtingen and Santos [68] is 
also an example to the ANFIS usage for maintenance planning. In this 
study, a system for monitoring wind turbines with ANFIS which is a 
combination of ANN and fuzzy logic analysis, is proposed according 
to SCADA data. In the continuation of the study, some sample appli-
cations of the system such as hydraulic failure, cooling system failure, 
anemometer failure and turbine control device failures are shown. Sun 
et al. [75] presented a generalized ANN model to estimate deviations 
of parameter data such as rotor speed, output power and component 
temperature collected in SCADA. Instead of testing the model on two 
states and using a single estimation model, multiple prediction models 
which are trained with different types of sample data are integrated to 
determine the deviations of the status parameters of the wind turbine. 
It is shown that the proposed method is more effective than the tradi-
tional single model-based method in the definition of turbine devia-
tion values. In another study about wind turbines, Bi et al. [12] devel-
oped a new system that gives an alarm 13-20 hours before the current 
system by using SCADA data for generator with ANN and ANFIS 
integration. Bangalore and Patriksson [7] carried out an exemplary 
study of hybrid models on wind turbines. In this study, implementa-
tion of ANN based status monitoring method is presented for a wind 
turbine and the system has been able to detect the fault 2 months in 
advance. They also proposed a mathematical optimization model for 
preventive maintenance scheduling. Finally, Lu et al. [49] predicted 
the economic life of rotor, transmission and generator equipment in 
the wind turbine with ANN.

When the studies are examined in the literature, the ANN method 
is frequently used in fault prediction studies without considering the 
sector. The review on fracture mechanics using artificial intelligence 
methods by Nasiri et al. [56] classified the studies under the titles of 
fault mode and mechanism identification, damage and fault detection 
and diagnosis, error and error detection, the diagnosis and mechanical 
fracture parameters. As a result of the review, they confirmed that the 
ANN method is used in 46% of the studies examined. This finding 
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proves that the ANN method is effectively used in the failure estima-
tion problems.

In this study, the time estimation between the two faults (in other 
words, mean time between failures-MTBF) is discussed, and in the 
literature, studies on maintenance planning based on fault estimations 
based on maintenance performance parameters and evaluating the 
system in the light of these parameters come to the fore. For example, 
in order to investigate system reliability, Komal and Sharma [38] ap-
plied three techniques based on ANN and genetic algorithm for the 
washing system in a paper factory, Jiang et al. [34] modeled the effect 
of climate and environmental conditions in wind turbines using the 
regression method, and Vedachalam and Ramadass [78] carried out 
an exemplary design for dynamic command system. For the predic-
tion of MTBF, which is effective in maintenance planning [34], Chen 
et al. [17] performed the MTBF estimation for a CNC machine using 
the DGM model because MTBF is an important parameter in the reli-
ability of complex equipment. Braglia et al., presented a multivari-
ate statistical approach that supports the classification of mechanical 
components in terms of MTBF [14]. They proposed a new approach 
to differentiate the operating parameters due to the differences in 
MTBF, and the determination of MTBF of mechanical parts, depend-
ing on the specific operating conditions. Unlike other authors, Jones et 
al. [35], Adoghe et al. [1] and Illias et al. [32] performed their studies 
by conducting investigations on malfunctions. Jones et al. [35] calcu-
lated the failure rate of the system with Bayesian Network for mainte-
nance planning in a manufacturing industry and used 1 / MTBF ratio 
in this calculation. Adoghe et al. [1] performed the statistical analysis 
of the failure data using the serial correlation coefficient and Laplace 
test methods, and thus, they provided the selection of critical compo-
nents having the highest risk index in terms of system reliability, and 
they presented an effective maintenance planning program to address 
these critical components. Thus, they proposed a reliability- centered 
maintenance methodology based on statistical analysis for an electri-
cal distribution system. Illias et al. [32] used dissolved gas analysis 
with a combination of ANN and three PSO techniques to estimate the 
initial failure of the transformer. In the ANN model, they used 100 
input data from 6 gas types, and considered the fault data, thermal 
error, low density and high- density parameters as output data. They 
categorized these data as training, verification, and test sets. Apart 
from these studies, Liu et al. [48] used the MTBF for the reliability 
of the CNC grinder and Yang et al. [88] used the maintenance failure 
repair time parameter.

Following the above explanations of the studies using ANN about 
maintenance planning, the differences of this study from other studies 
in the literature are as follows:

In the literature, different artificial intelligence methods are used •	
for maintenance planning problem, and the fault can be detected 
at the earliest 2 months ago. This study is based on the MTBF 
parameter, which presents a different philosophy between fault 
estimation studies. In this study, it is detected the faults earlier 
than other studies in the literature, and the estimation is made in 
periods between 201 and 1461 days. Predicting the faults in such 
an early stage proves the applicability of the model developed 
in real life problems, considering the length of the preliminary 
preparation and implementation process required for mainte-
nance.
In this study, maintenance planning is performed based on •	
MTBF estimation. Similar studies in terms of MTBF estimation 
in maintenance planning are often carried out for wind turbines. 
In these studies, a few equipment (such as turbine rotor, trans-
mission, generator or generally turbine for other power plants) 
is considered because these machines have not complex struc-
ture. However, hydroelectric power plants are the most complex 
one among the all renewable energy power plants. In this re-
spect, this is the first study on maintenance planning based on 

the MTBF parameter in the literature, which deals with complex 
hydroelectric power plants in a system. 
Furthermore, hydroelectric power plants are the most mature •	
renewable energy technology and therefore, these big-scale and 
complex plants affect the countries’ energy mix more than the 
wind turbines (e.g. the shares of hydro and wind in total electric-
ity generation in Turkey as of the end of 2018 are 20% and 6.3% 
respectively [21]). Accordingly, hydroelectric power plants are 
the most critical renewable resource for sustainable energy sup-
ply in the world. Therefore, it can be said that the effect of main-
tenance at these facilities on the sustainable energy supply is 
much higher than the wind turbines.
Another fact that makes this study stand out is the use of AHP-•	
TOPSIS-ANN method integration in terms of increasing the 
level of analyticalness in this problem field, which together with 
all these features make the study different. It is thought that this 
study will contribute significantly to the literature due to all 
these differences.

3. Methods

3.1.	 AHP

The AHP method developed by Saaty is used as a singular or sup-
portive method in many decision-making problems and its popularity 
is increasing day by day. This method allows people to define priori-
ties between criteria and alternatives in the decision-making process, 
together with qualitative and quantitative judgments [79].

The following are the implementation steps of AHP [65]:

Step 1: Determination of goal, criteria, sub-criteria, alternatives and 
hierarchical structure

This phase includes the aim of the decision maker, the criteria af-
fecting this goal, and the determination of the relationships between 
them through the addition of alternatives (Figure 1).

Step 2: Performing the pairwise comparison for criteria and alterna-
tives for each criterion

It is carried out by experts by comparing all criteria and alter-
natives according to their severity. At this stage, the 1-9 preference 
scale, which is developed by Saaty and given in Table 1 is used.

Fig. 1. Hierarchical structure [65]

Step 3: Calculation of priority vector

The vector weights (w) are calculated using the pairwise com-
parison matrix, normalization of A.w = λmax.w, and the following 
equation:
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i ijiw b n== ∑  	 (1)

Step 4: Calculation and control of the consistency ratio (CR)

CR is calculated as the result of the ratio of the consistency index 
(CI) to the random consistency index (RI - Table 2) (Eq.3). Eq.2 is 
used to calculate the CI:

	
CI n nmax= −( ) −( )λ / 1 	 (2)0

	   /  CR CI RI= 	 (3)

If CR<0.1, the pairwise comparison matrix is consistent. Other-
wise, pairwise comparisons should be checked and revised, and the 
above calculations should be repeated.

Step 5: Analysis of the scores

The highest value alternative is chosen as the best alternative.

3.2.	 TOPSIS

TOPSIS was developed by Hwang and Yoon in 1981 and is a 
method commonly used in real life multi-criteria decision problems. 
This method allows decision-makers to compare and sort alternatives. 
TOPSIS ranks the alternatives based on the maximum distance from 
the negative ideal solution, and minimum distance to the positive ide-
al solution. After all, the method chooses the closest alternative to the 
ideal solution. The method consists of 6 steps [31].

Step 1: Creating the decision matrix

In the rows of the decision matrix, the alternatives are listed and 
the criteria which affects the decision-making process are given in the 
columns.

Step 2: Creating the standard decision matrix

A standard decision matrix is created with Eq. 4:

	
m

2
ij kj

k 1
r aij / a

=
= ∑ 	 (4)

Step 3: Creating the weighted standard decision matrix

The weighted standard decision matrix is ​​obtained by multiply-
ing each weight value calculated for the criteria by the value of the 
relevant criterion in the standard decision matrix.

Step 4: Creating the positive ideal (A*) and negative ideal (A-) solu-
tions

According to the assumption that the criteria show a tendency to 
monotonous increasing and monotonous decreasing, the maximum 
and minimum ones of the values in the weighted standard decision 
matrix are determined for obtaining the positive and negative ideal 
solution sets.

Step 5. Calculating the separation measures

The distance of the criteria values of each decision point in the 
matrix to the ideal and negative ideal solution is calculated by using 
Eq. 5. and Eq. 6:

( )2* *

1

n
i ij j

j
S v v

=
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Step 6: Calculating the relative closeness to ideal solution 

The relative closeness to the ideal solution *
iC  is calculated by 

using the separation measures according to the Eq. 7:

	 *
*

i
i

i i
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−

−=
+

	 (7)

Ci* is in the range 0-1. If Ci*=1, the corresponding decision point 
is absolutely close to the ideal solution. On the other hand, Ci*=0 represents the absolute closeness of the decision point to the negative 
ideal solution [5].

3.3.	 Artificial neural network

ANN is a processor that has a natural tendency to put into practice 
the stored information based on experience. The ANN is similar to 
the human brain in two respects: the information is obtained by the 
network through a learning process and the so-called synaptic weight 
between neurons is used to store information [28]. The emergence 
and development of this method is as follows: McCulloch and Pitts 
[52] are taken the first steps for the ANN by setting up a simple neural 
network with a small electrical circuit. This network is emerged by 
imitating the computational ability of the human brain. In 1949, Hebb 
[30] described the basic theory of learning in his book, The Organiza-
tion of Behavior. Rosenblatt [63] found the perception of perceptron 
in 1958 is an important development for ANN. In 1969, Minsky and 
Papert [54] proved that the perceptron sensors could not solve the 

Table 1.	 Saaty’s preference scale [65]

Importance Values Value Definitions

1 Equal importance of both factors

3 Factor 1 is more important than factor 2

5 Factor 1 is much more important than factor 2

7 Factor 1 has a very strong importance com-
pared to factor 2

9 Factor 1 has an absolute superior importance 
to factor 2

2, 4, 6, 8 Intermediate values – when compromise is 
needed

Table 2.	 RI values for different n values [65]

n 1 2 3 4 5 6 8 9 10 11 12 13

RI 0 0 0,58 0,9 1,12 1,24 1,41 1,45 1,49 1,51 1,48 1,56
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XOR problem and suggested that two-layer feed-forward networks 
could be used. Rumelhart et al. [64] developed the back-propagation 
algorithm for multi-layered neural networks in 1986. After this proc-
ess, progress has also been made so far [29,89]. 

A simple neural network structure consists of inputs, weights, ag-
gregation function, activation function and output element (Figure 2). 
The inputs consist of numerical values from the outside of the system 
or from neurons. The effect of input to the cell on the network refers 
to weights. Aggregation function performs a linear combination of 
the inputs of the neuron by calculating the net input to the cell. The 
numerical sum of these two vectors gives the net input and it is sent 
to the activation function [28]. The activation function is a non-linear 
function that shows the network’s data structure [22]. There are many 
activation functions such as sigmoid, hyperbolic tangent, logarithmic 
sigmoid and purelin. 

Fig. 2. A simple ANN structure [28]

ANN architecture is divided into single-layer and multi-layer ar-
tificial neural networks. The multi-layered structure is used in more 
complex problems and the single-layered structures are used in sim-
pler problems. Due to the use of multi-layered networks in the com-
plex problems of energy [74,83,85], multi-layered structure is utilized 
in this study.

4. Case Study

In particular, population growth, industrialization and urbaniza-
tion with constantly evolving technology, the demand for electricity in 
Turkey is increased by an annual average rate of 5.6% in the last dec-
ade. At the same period, electricity consumption per capita in Turkey 
has reached from 2,052 kWh to 3,373 kWh with 64,4’% increase. Hy-
droelectric power plants met about one-fifth of electricity consump-
tion, which realizes 292,171,618 kWh as of the end of 2018 [21], 
in Turkey with these significant increasing rates. Therefore, uninter-
rupted electricity generation in hydroelectric power plants has critical 
importance in terms of energy supply security for Turkey. Consider-
ing the fact that one of the two pillars of sustainable energy supply in 
electricity generation power plants is maintenance management, the 
critical importance of maintenance planning in hydroelectric power 
plants is seen. 

In this context, especially the unwanted stoppages in the large-
scale hydroelectric power plants and the damages caused by them 
have to be considered as important problems. Because, these stop-
pages affect the energy supply security of the country negatively, not 
only the plant owner organization. Considering that the power plant 
with 5 units of 200 MW and 6,111 equipment is operated in accord-
ance with the operational directives, it is focused on the maintenance 
planning problem in this study, and it is reached the result of not car-
rying out the maintenance within a systematic plan is concluded with 
undesirable long-term stoppages in the plant. 

It is not possible to apply a standard maintenance policy for all 
equipment in such a large plant, due to the high level of impact of 

maintenance on costs.  For this reason, first, the most critical equip-
ment groups which stop the electricity generation in the power plant 
and interfere with the generation quality and reliability are determined 
with AHP-TOPSIS combination. Based on the fact that the plant can 
provide sustainable energy supply with appropriate maintenance to 
be applied to these equipment groups, an ANN model is proposed by 
using 11-years fault data of them. As a result, possible fault periods of 
the most critical equipment of the power plant are obtained by using 
this model. Maintenance before the estimated breakdown dates is an 
accepted strategy that prevents the occurrence of faults, and conse-
quently, a maintenance plan is prepared in line with this strategy and 
the results of the application are presented. The implementation stages 
of the study are presented in Figure 3.

4.1.	 Determining the critical equipment

At this stage, which is carried out according to the TOPSIS meth-
odology, the evaluation criteria specified in Table 3 are determined 
first. The evaluation criteria are determined by referring to the opin-
ions of the experts working in the plant and by taking into account all 
factors affecting the criticality level of each equipment for the plant 
and are determined to be related to each equipment. 

In Table 3, the verbal value is assigned to each equipment accord-
ing to each criterion using the parameters column specified under the 
criteria. The numerical equivalents of the parameters are created by 
utilizing the views of the power plant experts when considering the 
assumption of “all indicators must be numerical” for implementing 
the TOPSIS method.  While determining the numerical equivalents 
of the parameters, a scale consisting of integers between 0-10 is used, 
and the highest score (10) is given to the parameter which directly 
affects the electricity generation in the power plant (unit shutdown). 
Other parameter scores are determined by considering the highest 
scores given between all the criteria and the scores given between 
each criterion.

Upon completion of this stage, the initial decision matrix which 
dimension is 6,111 x 9 is obtained and TOPSIS methodology is started.  
In order to determine the criticality levels of 6,111 equipment under 9 

Fig. 3. Application steps
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criteria in terms of power plant, the evaluation criteria weights are cal-
culated with AHP at first. The CR of the pairwise comparison matrix 
formed between the criteria is calculated as 0.051, and it means the 
relevant matrix is consistent. The weight of the 9 criteria as a result of 
the calculations made on this consistent matrix are given in Table 4.

Weighted normalized decision matrix is formed by using the crite-
ria weights calculated with AHP and, ideal and negative ideal solution 

sets are determined. Then, the separation measures are calculated for 
each equipment with Eq.5 and Eq.6. Finally, equipment priority levels 
(Ci*), which are defined as relative closeness to ideal solution, of each 
equipment are found by using Eq.7. 

According to the priority levels of the equipment calculated with 
TOPSIS, the most critical equipment in terms of power plant is found 
as turbines, generators and disconnectors with a value of 0.837 Ci*. 

Table 3.	 Evaluation criteria 

Criteria Criteria Parameters Numerical Equivalents of 
the Parameters

C1 Warehouse backup

Never 3

Sometimes 2

All the time 1

C2 Maintenance pre-conditions

Unit shutdown 7

Shutdown by situation 6

Shutdown by time 5

Maintenance without back up 2

Shutdown does not require 1

C3 Additional work requirement
Required 5

Not required 1

C4 Failure period

Monthly 8

Quarterly 5

Semi - annually 3

Annually 2

Long term 1

Unknown 1

C5 Possible consequences

Unit shutdown 10

Problem in emergency situation 9

Load reduction 8

Running without back up 7

Equipment shutdown 6

Security problem 6

Deficient function 2

Damage in associated equipment 2

Problem in start 1

Fluid consumption increase 1

C6 Availability of measuring 
equipment

Yes 3

No 1

C7 Static, dynamic or electrical 
property of equipment

Mechanical-dynamic 2

Mechanical-static 1

Electrical 1

I&C 1

C8 Fault shooting time

One week 9

More than one day 3

Unknown 3

2-8 hours 2

Less than 2 hours 1

C9 Detectability of failure
Difficult 3

Easy 1
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This value is considered as 100 full score to ensure the ease of cal-
culations and the scores of all remaining equipment are recalculated 
accordingly. As a result of this process, power plants experts have 
determined that the equipment which directly affects the sustainable 
power generation have 95 and more scores. In this context, the most 
critical 14 equipment in the power plant which determines the scope 
of the study are given in Table 5. 

4.2.	 Failure date estimation of the critical equipment

In this study, it is focused on the MTBF which is one of the main-
tenance performance parameters for determining the possible break-
down dates of the 14 most critical equipment of the power plant. On 
the first step of the prediction stage, the input parameters affecting the 
breakdown are determined by 8 power plant professionals, each hav-
ing 10 to 25 years of hydroelectric power plant operation and mainte-
nance experience and their occupations are industrial, electrical, elec-
trical-electronic and mechanical engineer. Equipment type, pressure 
effect, economic life of the equipment, fault repair time and predictive 
maintenance effect are determined as input parameters. The output 
parameter is determined as the number of days between two faults 
of each equipment based on the fault data recorded since 2005. Since 
the numerical use of data in the ANN models has a positive effect on 
the education of the network, the data obtained are converted to nu-

merical form. The data set used in the study is given in Annex-1. The 
process of distinguishing data is one of the factors affecting the educa-
tion of the network. Because, with the application of different training 
and test data groupings, it has been observed that the test results have 
changed although the structure of the network is not changed. The 
success of artificial neural network application is closely related to 
the approaches and experiences to be applied. Determining the ap-
propriate structure in the success of the application is another factor 
that greatly influences the results of the model. In this context, 80% 
(228 faults) of the 285 faults that occurred in 11 years were used for 
training in the network and the remaining part (57 faults) was used 
to test the performance of the network. The 228-training data are al-
located with rates of 70-15-15 in MATLAB as training, validation and 
test data respectively. Weights are estimated during the training phase. 
The generalization ability of untrained data is preserved during the 
validation phase. In the testing phase, the error rate is calculated.

Multiple attempts should be made to find the appropriate results 
in the network model. These trials are carried out in three stages. First, 
the process is continued until the learning is achieved. In other words, 
trials are maintained until the deviations from the target values fall 
below a certain rate. If the proximity to the target values is provided, 
the learning is stopped for the network, and the samples which are 
not shown in learning phase are submitted to the network, and thus, 
test phase is started. If the deviation between the test results and the 
targeted values is not acceptable, improvements are made by backing 
to the learning stage of the network, and this process is continued until 
it is close to both learning and test objectives. Therefore, the process 
after the completion of the data related to the study is continued by 
examining the ANN models. The studies on ANN models are con-
ducted with MATLAB program and the network model and algorithm 
to be used are investigated [55]. The network type, number of layers 
in the network, number of neurons in each layer, types of learning and 
activation function types used in network training, learning and mo-
mentum coefficients and the number of iterations are changed sepa-
rately according to the results obtained during the study. The ANN 
architecture proposed in this study selected by comparison of network 
trial results as in most studies in the literature [11,14,28,46,60,71, 
etc.]. The suitability of the ANN model with 285 data was examined 
by comparing the results of approximately 150 trials rather than the 
Vapnik – Chervonenkis dimension theory. Learning and generaliza-
tion errors of each ANN model were observed, and the model with the 
lowest error rate, and no memorization in the performance graph was 
chosen. As a result, it was concluded that 5-20-10-1 ANN model was 
suitable for solving this problem with 285 fault data that occurred in 
the 11-year time period in the hydroelectric power plant. The network 
structure is given in Figure 4. 

Figure 5 shows the network with the best regression graph results 
among the networks established by changing the above-mentioned 
parameters. 2 hidden layers are used in this selected network, and the 

Table 4.	 Criteria weights 

Criteria Weights

C1 Warehouse backup 0.051

C2 Maintenance pre-conditions 0.241

C3 Additional work requirement 0.029

C4 Failure period 0.071

C5 Possible consequences 0.400

C6 Availability of measuring equipment 0.062

C7 Static, dynamic or electrical property of 
equipment 0.055

C8 Fault shooting time 0.029

C9 Detectability of failure 0.062

Table 5.	 The most critical equipment of the power plant 

Rank Equipment Score

1 Turbine 100

2 Generator 100

3 Disconnector 100

4 Intake structure 98

5 Butterfly valve 98

6 Main power transformer 97.5

7 Brake system 97.5

8 Compressed oil tank 96.9

9 Cooling water structure 96.9

10 Wicket gate 96.8

11 Relay 96.7

12 Excitation transformer 96.7

13 Speed governor 95.9

14 Circuit breaker 95

Fig. 4. Network structure
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number of neurons in these layers are 20 and 10, respectively. In the 
network structure, purelin and tansig functions were used as transfer 
functions respectively, and learngdm was used as a learning function. 
Moreover, Levenberg-Marquardt algorithm was used in the training 
of the network. “Epoch=1000”, “performance goal=0”, “learning 
rate=0.01”, “momentum constant=0.9” and “maximum validation 
failures=6” were taken as stopping criteria.  These are the stopping 
criteria in the ANN module in the MATLAB program.

Fig. 5. Regression graphs of selected network

The performance of the network is tested with unused data in the 
training of the network. The Mean Absolute Percentage Error (MAPE) 
and R2 values of the performance tested network are obtained as 0.03 
and 0.91, respectively. The values are consistent with the perform-
ance values of the studies examined in the literature. Therefore, this 
network is selected for the failure date estimation problem handled in 
this study. As a result of the estimation phase, the breakdown periods 

are determined for each critical equipment. The average fault period 
for the equipment is given in Table 6. Finally, maintenance plans are 
applied in such a way that they will be performed before to the failure 
dates. 

5. Conclusions and Recommendations

Electricity generation power plants are continuous production fa-
cilities focused on sustainable energy supply, which consist of conti-
nuity, reliability, efficiency, economy and environmental sensitivity. 
In order to achieve this comprehensive objective, it is necessary to 
comply with the operating rules determined by the power plant manu-
facturers and to implement the effectively managed maintenance 
processes simultaneously. In this context, it is a necessity to manage 
the maintenance processes to be carried out in the power plants, and 
the most critical and complex phase of maintenance management in 
electricity generation power plants, which consists of thousands of 
equipment, is maintenance planning. From this point of view in this 
study, a maintenance planning is performed with the integration of 
AHP-TOPSIS-ANN for 14 equipment with the highest importance in 
one of the large-scale hydroelectric power plants which meet about 
quintile of Turkey’s energy demand.

This study has the feature of being the first in the literature in 
terms of both the use of these methods in an integrated manner and 
creating a maintenance schedule with MTBF estimation in hydroelec-
tric power plants. In the studies examined in the literature, condition-
based fault estimations are made for a single equipment or machine 
system. However, in this study, a preliminary qualification is per-
formed for all equipment in a large-scale hydroelectric power plant 
and the most critical equipment are selected by analytical methods 
in wide perspective. In hydroelectric power plants where the main-
tenance activities are costly in terms of material, manpower and time 
requirements, and generation losses, these selected equipments are di-
rectly affecting the sustainable energy generation in the power plant. 
In this context, only the effective maintenance planning to be applied 
to these equipments meet the main target of the power plant and this 
corresponds exactly with the real-life plant management. The selected 
equipment is determined not only for a single service of the plant but 
also for its mechanical, electrical and electronic equipment. In this 
context, a structure covering the entire power plant is established. In 
addition to this, considering the lack of measuring sensors in all of 
the equipment, the possibility of arriving at very close time intervals 
of the signals and the difficulty of interfering with the equipment, 
and the costs about equipping all of the equipment with measuring 
sensors, the occurrence of failure etc., interfering with the equipment 
before the failure occurrence by using the signals of the sensors called 
as predictive maintenance have no effective results at the power plant. 
Because, prolonged and unexpected faults have often occurred, and 
the expected output from the plant could not be obtained for the plant 
owner and country. However, by performing the proposed mainte-
nance planning approach within the scope of the study, significant 
improvements are achieved in the power plant in terms of increasing 
generation efficiency, extending the economic life of the power plant, 
minimization of generation and maintenance costs, maximization of 
availability ratio and profit maximization. 

Hajian and Styles stated that in this state the output trains the tar-
gets very well for training, testing and validation and the R-value is 
over 0.9 also in this case the test set error and the validation set error 
have similar characteristics, so the ANN response is satisfactory [27]. 
Our ANN model is also suitable for explanation in this sentence. Fur-
thermore, in the proposed model, two-stage test application and the 
error rate were found to be 0.03, which is an accepted rate in the litera-
ture. In addition, the purpose of the model is to ensure energy supply 
security by keeping downtime caused by malfunction to a minimum. 
When maintenance planning is made according to the model results, 

Table 6.	 Average fault periods of critical equipment 

Rank Equipment Average Fault Period
(Day)

1 Turbine 1,096

2 Generator 1,095

3 Disconnector 733

4 Intake structure 730

5 Butterfly valve 201

6 Main power transformer 1,091

7 Brake system 731

8 Compressed oil tank 367

9 Cooling water structure 365

10 Wicket gate 1,457

11 Relay 1,461

12 Excitation transformer 722

13 Speed governor 372

14 Circuit breaker 728
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it has been observed that the stoppages caused by malfunctions are 
prevented and the results are effective in this sense.

In order to validate the maintenance schedule obtained as a result 
of this study and to determine the added-value, relevant maintenance 
schedule has been implemented in 1 unit of the power plant for 2 
years. In this context, no unit shutdowns have occurred due to lack 
of maintenance in 14 selected equipment as a result of maintenance 
activities carried out the power plant. When the malfunction data are 
analyzed, it is determined that the time required to eliminate such a 
malfunction varies between 8 hours and 20 days. In other words, a 
minimum of an 8-hours shutdown has been prevented and a potential 
loss of 1.6 million kWh of energy has not occurred.

One of the maintenance strategies required for hydroelectric pow-
er plants is revision maintenance. This maintenance strategy needs 
to be implemented at an average of 2 years at the plant where the ap-
plication is carried out for each unit, and an average of 110 calendar 
days is needed. The proposed maintenance schedule is also positively 
affected the revision maintenance performed. This is because only the 
necessary maintenance processes are carried out to include all stages 
of implementation in the power plant which has previously applied 
only the corrective maintenance strategy. Thus, the revision period is 
reduced to 82 days. This means a 34% improvement. Considering that 
the unit could not be used in electricity generation during the revision 

period, a total of 134.4 million kWh energy is gained for the 28-days 
difference between the pre- and post- period of proposed approach. 
These results show that the power plant owner gains millions of liras, 
as well as Turkey has an important contribution to the energy supply 
security.

As a result of the implementation of the entire maintenance sched-
ule, the added-value will be increased as a result of the implementation 
of the said plan in the other units of the plant. The above-mentioned 
additives of the study can be considered as important contributions to 
the literature when evaluated with the bullets mentioned at the end of 
the second section. 

In addition, as a continuation of this study, the entire process of 
the operation should be reevaluated over the fault-free operation pe-
riod of the power plant and a new network design can be made that 
learns the effect of maintenance on the system as well as a period that 
learns the faults. 
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Annex 1
Table 7.	 Data set

Equipment Pressure effect Economic life of the 
equipment Fault repair time Predictive mainte-

nance effect Breakdown periods

Intake structure 81 1.550 288 0 960

Cooling water structure 56 3.300 281 4 937

Butterfly valve 80 1.753 257 12 856

Relay 6 4.002 238 52 298

Disconnector 3 2.675 232 0 772

Butterfly valve 80 1.341 230 0 287

Intake structure 72 1.723 228 1 761

Relay 4 3.010 226 0 282

Cooling water structure 63 3.006 214 4 268

Speed governor 81 2.941 212 4 708

Disconnector 1 0.677 208 12 694

Cooling water structure 70 2.151 203 0 254

Cooling water structure 70 2.013 198 0 248

Butterfly valve 90 1.505 198 0 659

Excitation transformer 12 1.317 191 0 239

Cooling water structure 70 3.437 190 4 237

Turbine 80 2.871 188 4 235

Generator 90 2.687 181 0 603

Speed governor 90 2.676 179 4 596

Intake structure 81 1.293 173 0 216

Excitation transformer 16 1.342 167 0 418

Speed governor 90 3.077 165 4 413

Disconnector 2 0.345 165 0 206

Wicket gate 12 4.018 164 12 2466

Generator 100 2.848 160 0 200

Disconnector 2 0.183 159 0 529
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Relay 6 2.675 157 0 392

Turbine 80 2.443 156 0 520

Relay 10 2.848 153 0 383

Cooling water structure 56 2.430 152 0 506

Relay 6 2.337 147 0 35

Turbine 72 1.889 146 4 486

Compressed oil tank 72 1.670 145 2 2169

Main power transformer 12 2.866 143 52 2143

Butterfly valve 100 1.259 141 0 470

Speed governor 81 2.009 141 0 197

Circuit breaker 35 2.838 140 0 35

Turbine 72 2.159 133 0 333

Wicket gate 18 2.852 133 0 186

Butterfly valve 90 1.924 132 12 441

Wicket gate 12 2.842 131 0 184

Butterfly valve 90 1.838 131 12 437

Brake system 4 2.306 130 2 1957

Turbine 80 1.205 130 0 182

Turbine 80 1.550 129 0 322

Excitation transformer 20 1.424 128 0 320

Excitation transformer 12 1.508 127 0 318

Speed governor 81 3.204 127 4 178

Turbine 64 2.730 124 4 310

Speed governor 81 1.873 124 0 99

Butterfly valve 100 1.510 123 0 172

Turbine 64 1.978 121 4 303

Excitation transformer 20 1.923 120 4 1801

Circuit breaker 30 2.850 120 0 96

Relay 8 4.010 119 52 167

Butterfly valve 100 1.925 119 12 29

Generator 100 2.838 119 0 95

Speed governor 90 2.001 118 0 71

Relay 10 2.507 117 0 164

Speed governor 81 2.405 116 0 93

Generator 90 3.677 115 4 1730

Relay 10 3.838 115 52 1725

Wicket gate 6 2.345 114 0 91

Speed governor 72 3.079 113 4 29

Speed governor 72 2.401 112 0 157

Relay 8 3.950 111 52 1661

Main power transformer 12 2.009 110 0 154

Generator 90 2.507 109 0 87

Butterfly valve 100 1.171 108 0 151

Disconnector 1 2.338 108 0 86

Cooling water structure 63 3.444 107 4 150

Circuit breaker 25 3.010 105 0 123

Wicket gate 12 2.513 105 0 84

Wicket gate 18 2.682 104 0 146

Turbine 80 1.891 104 4 83
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Main power transformer 6 2.870 103 52 82

Speed governor 81 2.144 100 0 140

Speed governor 90 2.277 96 0 77

Speed governor 90 1.868 96 0 26

Wicket gate 18 2.508 96 0 134

Cooling water structure 56 2.014 93 0 30

Excitation transformer 16 1.927 93 4 130

Circuit breaker 35 3.015 93 0 74

Relay 8 2.345 93 0 25

Wicket gate 12 2.673 91 0 128

Speed governor 81 2.271 90 0 126

Disconnector 1 0.678 90 12 29

Main power transformer 12 2.873 89 52 71

Compressed oil tank 80 1.171 88 0 123

Speed governor 81 2.273 88 0 70

Speed governor 90 2.412 87 0 31

Main power transformer 6 3.004 86 52 121

Intake structure 90 1.295 84 0 117

Turbine 64 3.157 84 4 117

Circuit breaker 35 2.505 83 0 99

Cooling water structure 63 2.866 82 4 1224

Speed governor 72 2.145 80 0 32

Turbine 64 2.293 79 0 111

Relay 10 2.352 79 0 110

Circuit breaker 25 2.517 78 0 29

Wicket gate 12 3.003 77 0 108

Main power transformer 6 3.436 77 52 1152

Speed governor 72 2.136 76 0 107

Circuit breaker 20 3.018 71 0 27

Wicket gate 6 2.518 70 0 84

Relay 6 2.680 70 0 24

Circuit breaker 30 2.675 68 0 82

Circuit breaker 25 3.020 65 0 15

Circuit breaker 25 2.520 60 0 29

Relay 6 2.682 60 0 31

Wicket gate 12 2.345 56 0 15

Circuit breaker 20 3.015 55 0 13

Intake structure 72 1.551 51 0 6

Intake structure 81 1.372 50 0 6

Intake structure 90 1.372 50 0 5

Cooling water structure 56 3.301 49 4 8

Circuit breaker 25 2.838 49 0 6

Relay 8 2.352 49 0 5

Circuit breaker 30 3.003 48 0 7

Circuit breaker 30 2.843 47 0 5

Circuit breaker 25 2.680 47 0 6

Circuit breaker 25 3.018 47 0 8

Circuit breaker 30 3.017 47 0 15

Circuit breaker 30 2.520 47 0 7
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Circuit breaker 35 2.682 47 0 35

Circuit breaker 30 2.680 47 0 5

Circuit breaker 35 2.342 46 0 6

Circuit breaker 30 2.838 46 0 4

Circuit breaker 30 3.003 46 0 8

Circuit breaker 20 2.505 46 0 5

Circuit breaker 20 2.517 45 0 7

Circuit breaker 25 2.835 45 0 4

Wicket gate 18 2.520 45 0 21

Circuit breaker 25 2.340 45 0 6

Butterfly valve 80 1.924 45 12 5

Circuit breaker 25 2.683 44 0 4

Wicket gate 12 2.350 44 0 7

Speed governor 81 2.409 44 0 21

Circuit breaker 20 2.512 44 0 8

Butterfly valve 80 1.173 44 0 6

Circuit breaker 20 2.670 44 0 4

Speed governor 81 2.011 44 0 5

Speed governor 90 2.147 43 0 23

Speed governor 90 1.879 43 0 15

Circuit breaker 25 2.668 43 0 4

Speed governor 72 2.411 43 0 6

Speed governor 72 2.409 42 0 8

Circuit breaker 25 2.342 42 0 4

Speed governor 72 2.011 41 0 4

Circuit breaker 35 2.687 41 0 27

Speed governor 72 1.880 41 0 8

Intake structure 90 1.551 41 0 9

Speed governor 90 1.868 40 0 4

Circuit breaker 20 3.003 40 0 3

Circuit breaker 20 2.835 39 0 3

Speed governor 72 1.876 39 0 8

Circuit breaker 25 2.687 39 0 3

Circuit breaker 30 3.020 39 0 9

Circuit breaker 35 2.683 38 0 3

Circuit breaker 30 2.835 38 0 24

Circuit breaker 20 2.670 38 0 15

Cooling water structure 70 2.151 38 0 1

Main power transformer 9 3.436 38 52 8

Circuit breaker 35 2.342 38 0 3

Circuit breaker 20 2.352 37 0 27

Speed governor 81 2.409 37 0 3

Circuit breaker 30 2.845 37 0 9

Speed governor 81 2.011 36 0 3

Circuit breaker 25 2.852 36 0 18

Speed governor 72 2.009 36 0 3

Circuit breaker 30 2.683 35 0 9

Speed governor 90 1.876 35 0 3

Circuit breaker 20 3.018 35 0 1
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Circuit breaker 20 2.843 35 0 28

Relay 6 2.345 35 0 10

Intake structure 72 1.296 34 0 14

Wicket gate 6 2.502 33 0 9

Circuit breaker 25 3.017 33 0 10

Circuit breaker 30 2.672 33 0 28

Circuit breaker 25 2.853 32 0 12

Circuit breaker 35 2.852 32 0 2

Speed governor 90 2.411 32 0 20

Circuit breaker 25 3.010 32 0 1

Circuit breaker 25 2.842 32 0 15

Circuit breaker 35 2.685 32 0 2

Circuit breaker 30 2.668 31 0 2

Circuit breaker 35 2.345 31 0 13

Circuit breaker 30 3.012 31 0 10

Circuit breaker 35 2.520 31 0 2

Circuit breaker 30 2.505 31 0 2

Circuit breaker 25 2.505 30 0 2

Speed governor 90 2.012 30 0 24

Circuit breaker 25 2.352 30 0 2

Speed governor 90 2.405 30 0 11

Circuit breaker 35 2.350 29 0 2

Speed governor 72 2.941 29 4 2

Circuit breaker 35 2.520 29 0 1

Speed governor 90 2.411 29 0 2

Speed governor 72 2.325 20 0 2

Circuit breaker 20 2.342 28 0 23

Speed governor 81 2.144 28 0 2

Speed governor 63 2.011 28 0 12

Speed governor 72 2.144 27 0 2

Brake system 3 1.802 27 0 2

Relay 8 3.950 27 52 19

Intake structure 90 1.296 27 0 17

Circuit breaker 20 2.853 26 0 2

Circuit breaker 25 2.345 26 0 1

Speed governor 72 2.409 25 0 1

Circuit breaker 20 2.348 25 0 28

Circuit breaker 25 2.342 25 0 18

Cooling water structure 63 2.013 25 0 13

Speed governor 90 2.277 23 0 1

Circuit breaker 30 2.343 23 0 1

Circuit breaker 20 2.345 23 0 10

Generator 100 2.502 21 0 19

Speed governor 72 2.273 21 0 1

Relay 4 2.682 21 0 0

Circuit breaker 30 3.003 20 0 60

Circuit breaker 20 2.668 20 0 28

Compressed oil tank 80 1.672 19 2 58

Relay 8 2.340 19 0 58
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Intake structure 81 1.372 19 0 1

Speed governor 72 2.011 19 0 1

Circuit breaker 35 3.015 19 0 0

Circuit breaker 35 2.340 19 0 56

Cooling water structure 56 2.156 19 0 15

Wicket gate 12 2.337 18 0 54

Excitation transformer 12 1.923 18 4 1

Circuit breaker 20 2.508 18 0 54

Circuit breaker 30 2.337 18 0 54

Relay 4 4.010 18 52 0

Wicket gate 18 2.352 18 0 53

Cooling water structure 63 2.154 18 0 53

Turbine 80 1.717 18 4 53

Circuit breaker 35 2.683 17 0 14

Relay 8 2.678 20 0 52

Speed governor 63 2.011 15 0 1

Circuit breaker 30 2.838 17 0 51

Circuit breaker 35 2.510 17 0 51

Excitation transformer 16 1.425 17 0 50

Circuit breaker 35 2.347 16 0 13

Circuit breaker 35 2.680 16 0 21

Intake structure 72 1.372 16 0 0

Generator 90 3.677 15 4 1

Speed governor 90 2.148 15 0 20

Speed governor 81 1.880 15 0 45

Speed governor 90 1.869 15 0 22

Circuit breaker 30 2.685 15 0 23

Circuit breaker 20 2.340 15 0 0

Circuit breaker 25 2.350 15 0 12

Speed governor 90 2.013 15 0 44

Turbine 72 2.874 15 4 44

Turbine 72 1.372 15 0 44

Wicket gate 18 2.340 14 0 43

Circuit breaker 30 2.350 14 0 41

Circuit breaker 20 2.345 14 0 11

Wicket gate 6 2.502 13 0 40

Brake system 4 1.802 13 0 40

Speed governor 81 2.411 13 0 1

Cooling water structure 70 2.867 13 4 38

Speed governor 90 2.144 12 0 10

Speed governor 90 2.137 12 0 37

Circuit breaker 25 2.845 12 0 37

Speed governor 72 1.876 12 0 36

Circuit breaker 30 2.668 12 0 0

Circuit breaker 20 2.518 12 0 21

Speed governor 63 1.877 12 0 35

Circuit breaker 30 2.352 11 0 0

Circuit breaker 35 2.518 9 0 0

Circuit breaker 30 2.342 9 0 0
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Circuit breaker 25 2.668 7 0 0

Relay 10 2.343 7 0 70

Disconnector 3 0.187 7 0 68

Circuit breaker 25 2.515 7 0 68

Wicket gate 18 2.348 7 0 66

Turbine 64 1.715 6 4 64

Wicket gate 6 2.685 6 0 62

Speed governor 72 2.415 6 0 62

Main power transformer 9 2.011 6 0 61

Speed governor 81 2.408 6 0 61

Butterfly valve 90 1.173 6 0 61

Circuit breaker 30 2.342 6 0 0

Speed governor 81 1.876 5 0 0
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