PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the Class of Perfectly Null Sets and Its Transitive Version

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We introduce two new classes of special subsets of the real line: the class of perfectly null sets and the class of sets which are perfectly null in the transitive sense. These classes may play the role of duals to the corresponding classes on the category side. We investigate their properties and, in particular, we prove that every strongly null set is perfectly null in the transitive sense, and that it is consistent with ZFC that there exists a universally null set which is not perfectly null in the transitive sense. Finally, we state some open questions concerning the above classes. Although the main problem of whether the classes of perfectly null sets and universally null sets are consistently different remains open, we prove some results related to this question.
Rocznik
Strony
1--20
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
  • Institute of Mathematics, University of Warsaw, 02-097 Warszawa, Poland
autor
  • Institute of Mathematics, Cardinal Stefan Wyszyński University in Warsaw, 01-938 Warszawa, Poland
Bibliografia
  • [1] T. Bartoszyński and H. Judah, Borel images of sets of reals, Real Anal. Exchange 20 (1994–95), 536–558.
  • [2] T. Bartoszyński and H. Judah, Set Theory: On the Structure of the Real Line, A K Peters, 1995.
  • [3] J. Brendle, P. Larson, and S. Todorčevic, Rectangular axioms, perfect set properties and decomposition, Bull. Cl. Sci. Math. Nat. Sci. Math. 33 (2008), 91–130.
  • [4] L. Bukovský, The Structure of the Real Line, IMPAN Monogr. Mat. 71, Birkhäuser, 2011.
  • [5] M. Burke and A. Miller, Models in which every nonmeager set is nonmeager in a nowhere dense Cantor set, Canad. J. Math. 57 (2005), 1139–1154.
  • [6] F. Galvin, J. Mycielski, and R. Solovay, Strong measure zero sets, Notices Amer. Math. Soc. 26 (1973), A-280.
  • [7] E. Grzegorek, Solution of a problem of Banach on ϭ-fields without continuous measures, Bull. Acad. Polon. Sci. Sér. Sci. Math. 28 (1980), 7–10.
  • [8] E. Grzegorek, Always of the first category sets, in: Proceedings of the 12th Winter School on Abstract Analysis (Srní, 1984), Suppl. Rend. Circ. Mat. Palermo 6 (1984), 139–147.
  • [9] A. S. Kechris, Classical Descriptive Set Theory, Grad. Texts in Math. 156, Springer, 1995.
  • [10] M. Kysiak, A. Nowik, and T. Weiss, Special subsets of the reals and tree forcing notions, Proc. Amer. Math. Soc. 135 (2007), 2975–2982.
  • [11] N. Lusin, Sur les ensembles toujours de première catégorie, Fund. Math. 21 (1933), 114–126.
  • [12] E. Marczewski, On absolutely measurable sets and functions, C. R. Soc. Sci. Varsovie 30 (1937), 39–67 (in Polish).
  • [13] A. Miller, Special subsets of the real line, in: Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984, 201–233.
  • [14] A. Nowik, Remarks about a transitive version of perfectly meager sets, Real Anal. Exchange 22 (1996-97), 406–412.
  • [15] A. Nowik, M. Scheepers, and T. Weiss, The algebraic sum of sets of real numbers with strong measure zero sets, J. Symbolic Logic 63 (1998), 301–324.
  • [16] A. Nowik and T. Weiss, The algebraic sum of a set of strong mesure zero and a perfectly meager set revisited, East-West J. Math. 2 (2000), 191–194.
  • [17] A. Nowik and T. Weiss, Not every Q-set is perfectly meager in transitive sense, Proc. Amer. Math. Soc. 128 (2000), 3017–3024.
  • [18] A. Nowik and T.Weiss, Strongly meager sets and their uniformly continuous images, Proc. Amer. Math. Soc. 129 (2001), 265–270.
  • [19] J. Pawlikowski, Products of perfectly meager sets and Lusin’s function, Proc. Amer. Math. Soc. 107 (1989), 811–815.
  • [20] I. Recław, Products of perfectly meagre sets, Proc. Amer. Math. Soc. 112 (1991), 1029–1031.
  • [21] I. Recław, Some additive properties of special sets of reals, Colloq. Math. 62 (1991), 221–226.
  • [22] M. Scheepers, Additive properties of sets of real numbers and an infinite game, Quaest. Math. 16 (1993), 177–191.
  • [23] W. Sierpiński, Hypothèse du continu, Monogr. Mat. 4, Warszawa–Lwów, 1934.
  • [24] P. Zakrzewski, Universally meager sets, Proc. Amer. Math. Soc. 129 (2000), 1793–1798.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ca77b6c5-5c6d-454e-802f-3e008ccf2fd6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.