PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of waste rubber powder as filler for plywood application

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study investigated the suitability of waste rubber powder (WRP) use as filler in adhesive formulation for plywood application. Melamine Urea Formaldehyde (MUF) was employed as resin for formulating the wood adhesive. To improve chemical properties and bonding quality of adhesive, WRP was treated by different chemicals like 20% nitric acid, 30% hydrogen peroxide and acetone solution. The treated WRP were analysed by XRD and it showed that inorganic compounds were removed and carbon was remained as major component under the treatment of 20% HNO3. The treatment improved the mechanical properties like shear strength and formaldehyde emission of plywood (high shear strength and low formaldehyde emission). The physico-chemical interaction between the wood, resin and filler was investigated using fourier transform infrared spectroscopic (FTIR) technique and the interactions among N-H of MUF and C=O of wood and WRP were identified. The morphology of wood-adhesive interface was studied by field emission scanning electron microscope (FESEM) and light microscope (LM). It showed that the penetration of adhesives and fillers through the wood pores was responsible for mechanical interlocking. Therefore, chemically treated WRP proved its potential use as filler in MUF based adhesive for making plywood.
Rocznik
Strony
41--47
Opis fizyczny
Bibliogr. 37 poz., rys., wykr., wz.
Twórcy
autor
  • Universiti Malaysia Pahang, Faculty of Chemical and Natural Resources Engineering, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia
autor
  • Universiti Malaysia Pahang, Faculty of Chemical and Natural Resources Engineering, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia
autor
  • Universiti Malaysia Pahang, Faculty of Chemical and Natural Resources Engineering, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia
  • Universiti Malaysia Pahang, Faculty of Chemical and Natural Resources Engineering, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia
  • College of Applied Sciences, Department of Engineering, 311 Sohar, Oman
Bibliografia
  • 1. Malaysian Timber Industry Board. (2012). Retrieved 1-12-2013 from http://www.mtib.gov.my
  • 2. Ong, H.R., Prasad, D.M.R., Khan, M.R., Rao, D.S., Jeyaratnam, N. & Raman, D.K. (2012). Effect of Jatropha Seed Oil Meal and Rubber Seed Oil Meal as Melamine Urea Formaldehyde Adhesive Extender on the Bonding Strength of Plywood. J. Appl. Sci. 12(11), 1148-1153. DOI: 10.3923/ jas.2012.1148.1153.
  • 3. Ong, H.R., Prasad, R., Khan, M.M.R. & Chowdhury, M.N.K. (2012). Effect of palm kernel meal as melamine urea formaldehyde adhesive extender for plywood application: Using a Fourier Transform Infrared Spectroscopy (FTIR) study. Appl. Mech. Mater. 121-126, 493-498. DOI: 10.4028/www.scientific. net/AMM.121-126.493.
  • 4. Zhang, Y., Zhu, W., Lu, Y., Gao, Z. & Gu, J. (2013). Water-Resistant Soybean Adhesive for Wood Binder Employing Combinations of Caustic Degradation, Nano-Modification, and Chemical Crosslinking. BioResour. 8(1), 1283-1291.
  • 5. International Agency for Research on Cancer Press. (2004).
  • 6. Dongbin, F. & An, M. (2006). Curing Characteristics of Low Molar Ratio Urea-Formaldehyde Resins. J. Adhes. Interface 7(4), 45-52.
  • 7. Kim, S., Kim, H.J., Kim, H.S. & Lee, H.H. (2006). Effect of Bio-Scavengers on the Curing Behavior and Bonding Properties of Melamine-Formaldehyde Resins. Macromol. Mater. Eng. 291(9), 1027-1034. DOI: 10.1002/mame.200600213.
  • 8. Que, Z., Furuno, T., Katoh, S. & Nishino, Y. (2007). Effects of urea-formaldehyde resin mole ratio on the properties of particleboard. Build. Environ. 42(3), 1257-1263. DOI: 10.1016/j. buildenv.2005.11.028.
  • 9. Mao, A., Hassan, E.B. & Kim, M.G. (2013). Investigation of Low Mole Ratio UF and UMF Resins Aimed at Lowering the Formaldehyde Emission Potential of Wood Composite Boards. BioResour. 8(2), 2453-2469.
  • 10. Pizzi, A. (1994). Advanced wood adhesives technology. CRC Press.
  • 11. Hojilla-Evangelista, M.P. (2010). Adhesion properties of plywood glue containing soybean meal as an extender. J. Am. Chem. Soc. 87(9), 1047-1052. DOI: 10.1007/s11746-010-1586-x.
  • 12. Hojilla-Evangelista, M.P. & Bean, S.R. (2011). Evaluation of sorghum flour as extender in plywood adhesives for sprayline coaters or foam extrusion. Ind. Crops Prod. 34(1), 1168-1172. DOI: 10.1016/j.indcrop.2011.04.005.
  • 13. Zhang, J.L., Chen, H.X., Ke, C.M., Zhou, Y., Lu, H.Z. & Wang, D.L. (2012). Graft polymerization of styrene onto waste rubber powder and surface characterization of graft copolymer. Polym. Bull. 68(3), 789-801. DOI: 10.1007/s00289-011-0586-9.
  • 14. Wu, W.L. & Zhang, J. (2013). Preparation and Characterization on an Environment Friendly Used Rubber Powder Modified Pulp Sediments Composites. Adv. Mater. Res. 602, 1111-1115. DOI: 10.1007/s13726-012-0083-5.
  • 15. Marković, G., Veljković, O., Marinović-Cincović, M., Jovanović, V., Samaržija-Jovanović, S. & Budinski-Simendić, J. (2013). Composites based on waste rubber powder and rubber blends: BR/CSM. Compos. Part B Eng. 45(1), 178-184. DOI: 10.1016/j.compositesb.2012.08.013.
  • 16. Al-Tayeb, M.M., Abu Bakar, B., Akil, H.M. & Ismail, H. (2012). Effect of partial replacements of sand and cement by waste rubber on the fracture characteristics of concrete. Polym. Plast. Technol. Eng. 51(6), 583-589. DOI: 10.1080/03602559.2012.659307.
  • 17. Wu, W. & Zhang, J. (2012). Preparation and characterization of environment friendly used rubber powder modified pulp sediments composites. Iran. Polym. J. 21(11), 763-769. DOI: 10.1007/s13726-012-0083-5.
  • 18. Fan, P. & Lu, C. (2011). A Study on Functionalization of Waste Tire Rubber Powder Through Ozonization. J. Polym. Environ. 19(4), 943-949. DOI: 10.1007/s10924-011-0352-y.
  • 19. Bono, A., Yeo, K.B. & Siambun, N.J. (2003). Melamine- Urea-Formaldehyde (MUF) Resin: The Effect of the Number of Reaction Stages and Mole Ratio on Resin Properties. J. Teknol. 38(1), 43-54. DOI: 10.11113/jt.v38.508.
  • 20. Japanese Agricultural Standard for Plywood. (2003). MAFF, No.233 Ministry of Agriculture and Forestry.
  • 21. Nash, T. (1953). The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem. J. 55(3), 416.
  • 22. Kim, S. & Kim, H.J. (2006). Study of miscibility of melamine- formaldehyde resin and poly (vinyl acetate) blends for use as adhesives in engineered flooring. J. Adhes. Sci. Technol. 20(2-3), 209-219. DOI: 10.1163/156856106775897739.
  • 23. Tamez Uddin, M., Rukanuzzaman, M., Maksudur Rahman Khan, M. & Akhtarul Islam, M. (2009). Adsorption of methylene blue from aqueous solution by jackfruit (Artocarpus heteropyllus) leaf powder: A fixed-bed column study. J. Environ. Manage. 90(11), 3443-3450. DOI: 10.1016/j. jenvman.2009.05.030.
  • 24. Minamisawa, M., Minamisawa, H., Yoshida, S. & Takai, N. (2004). Adsorption behavior of heavy metals on biomaterials. J. Agric. Food Chem. 52(18), 5606-5611. DOI: 10.1021/jf0496402.
  • 25. Soto, R., Freer, J. & Baeza, J. (2005). Evidence of chemical reactions between di-and poly-glycidyl ether resins and tannins isolated from Pinus radiata D. Don bark. Bioresour. Technol. 96(1), 95-101. DOI: 10.1016/j.biortech.2003.05.006.
  • 26. Liu, X., Li, Z., Zhang, Q., Li, F. & Kong, T. (2012). Preparation of CuO/C core-shell nanowires and its application in lithium ion batteries. Mater. Lett. 80, 37-39. DOI: 10.1016/j. matlet.2012.04.054.
  • 27. Blanton, T.N. & Barnes, C.L. (2005). Quantitative analysis of calcium oxide desiccant conversion to calcium hydroxide using X-ray diffraction. Adv. X-ray Anal. 28, 45-51.
  • 28. Alexandre-Franco, M., Fernández-González, C., Alfaro- -Domínguez, M., Palacios Latasa, J.M. & Gómez-Serrano, V. (2010). Devulcanization and Demineralization of Used Tire Rubber by Thermal Chemical Methods: A Study by X-ray Diffraction. Energy Fuels 24(6), 3401-3409. DOI: 10.1021/ef901523t.
  • 29. Darmawan, S., Sofyan, K., Pari, G. & Sugiyanto, K. (2010). Effect of activated charcoal addition on formaldehyde emission of medium density fiberboard. J. For. Res. 7(2), 100-111.
  • 30. Kumar, A., Gupta, A., Sharma, K., Nasir, M. & Khan, T.A. (2013). Influence of activated charcoal as filler on the properties of wood composites. Int. J. Adhes. Adhes. 46, 34-39. DOI: 10.1016/j.ijadhadh.2013.05.017.
  • 31. Mansouri, H.R. & Pizzi, A. (2007). Recycled micronized polyurethane powders as active extenders of UF and PF wood panel adhesives. Holz als Roh und Werkstoff 65(4), 293-299. DOI: 10.1007/s00107-006-0168-y.
  • 32. Bono, A., Maizura, N., Salah, S. & Chiw, H.K. (2011). The Performance of Melamine-Urea-Formaldehyde Resin with Palm Kernel as Filler. Adv. Mater. Res. 233-235, 3-10. DOI: 10.4028/www.scientific.net/AMR.233-235.3.
  • 33. Babcock, G.E. & Smith, A.K. (1947). Extending phenolic resin plywood glues with proteinaceous materials. Ind. Eng. Chem. 39(1), 85-88. DOI: 10.1021/ie50445a029.
  • 34. Qiao, L., Easteal, A.J., Bolt, C.J., Coveny, P.K. & Franich, R.A. (1999). The effects of filler materials on poly (vinyl acetate) emulsion wood adhesives. Pigment Resin Technol. 28(6), 326-330. DOI: 10.1108/03699429910302300.
  • 35. Singh, A., Dawson, B., Rickard, C., Bond, J. & Singh, A. (2008). Light, confocal and scanning electron microscopy of wood-adhesive interface. Microsc. Anal. 22(3), 5-8.
  • 36. De Meijer, M., Thurich, K. & Militz, H. (1998). Comparative study on penetration characteristics of modern wood coatings. Wood Sci. Technol. 32(5), 347-365. DOI: 10.1007/ BF00702791.
  • 37. Kim, S., Kim, H.J., Xu, G.Z. & Eom, Y.G. (2007). Environment-friendly adhesives for fancy veneer bonding of engineered flooring to reduce formaldehyde and TVOC emissions. Mokchae Konghak 35(5), 58-66.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ca6dc5ab-1e26-4d92-892c-cc574b70a306
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.