PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Recent and future developments in finite element metal forming simulation

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Aktualny i przyszły rozwój symulacji metodą elementów skończonych procesów przeróbki plastycznej metali
Języki publikacji
EN
Abstrakty
EN
After more than 40 years of development, finite element metal forming simulation has reached a high level of maturity. After a short mechanical and thermal introduction, the main scientific and technical developments are briefly described. We consider numerical issues, such as adaptive remeshing or parallel computing; coupling phenomena for a more realistic simulation, such as thermal and metallurgical coupling, with a special emphasis on modeling of microstructure evolution; the use of optimization for forming processes or for parameters identification. Finally the main potential future research fields for the next 10 years are outlined: process stability and stochastic approaches, more effective massively parallel computing and extension of the application to generate the whole “virtual factory”.
PL
Po ponad 40 latach rozwoju metoda elementów skończonych (MES) osiągnęła wysoki poziom doskonałości. W artykule przedstawiono krótki wstęp do rozwiązywania tą metodą zadań mechanicznych i cieplnych, a następnie opisano główne naukowe i techniczne aspekty rozwoju MES. Rozważono problemy numeryczne, takie jak adaptacyjna przebudowa siatki (adaptive remeshing), rozwiązywanie zadań sprzężonych, takich jak sprzężenie cieplno-mechaniczne, dla otrzymania bardziej realistycznych symulacji. Duży nacisk położono też na modelowanie rozwoju mikrostruktury, zastosowanie metod optymalizacji procesów kształtowania metali oraz na identyfikację parametrów modeli. W końcowej części artykułu omówiono główne potencjalne kierunki badań przewidywanych na najbliższe 10 lat, obejmujących stabilizację rozwiązania, uwzględnienie aspektów stochastyczne oraz bardziej efektywne obliczenia rozproszone. Podsumowaniem jest propozycja rozszerzenia zastosowań MES i stworzenie „wirtualnej fabryki".
Wydawca
Rocznik
Strony
265--293
Opis fizyczny
Bibliogr. 98 poz., rys.
Twórcy
autor
  • Transvalor, 694 Avenue du Dr. Maurice Donat, 06255 Mougins Cedex, France
  • Transvalor, 694 Avenue du Dr. Maurice Donat, 06255 Mougins Cedex, France
autor
  • CEMEF, Mines Paristech, BP. 207, 06904 Sophia Antipolis Cedex, France
  • CEMEF, Mines Paristech, BP. 207, 06904 Sophia Antipolis Cedex, France
autor
  • CEMEF, Mines Paristech, BP. 207, 06904 Sophia Antipolis Cedex, France
autor
  • CEMEF, Mines Paristech, BP. 207, 06904 Sophia Antipolis Cedex, France
autor
  • Transvalor, 694 Avenue du Dr. Maurice Donat, 06255 Mougins Cedex, France
Bibliografia
  • Agnoli, A., Bozzolo, N., Loge, R., Franchet, J.-M., Laigo, J., Bemacki, M., 2014, Development of a level set method-ology to simulate grain growth in the presence of real secondary phase particles and stored energy - Application to nickel-based superalloy, Comp. Mater. Sci., 89, 233-241.
  • Archard, J. F., Hirst, W., 1956, The Wear of Metals under Unlubricated Conditions, Proceedings of the Royal Society, A 236, 397-410.
  • Barlat, F., Lian, J., 1989, Plastic behaviour and stretchabihty of sheet metals (Part I) A yield function for orthotropic sheet under plane stress conditions, Int. J. Plasticity, 5, 51-56.
  • Bernacki, M., Chastel, Y., Coupez, T., Loge, R. E., 2008, Level set framework for the numerical modelling of primary recrystallization in polycrystalline materials, Scripta Mater., 58, 12, 1129-1132.
  • Bernacki, M., Resk, H., Coupez, T., Loge, R., 2009, Finite element model of primary recrystallization in polycrys¬talline aggregates using a level set framework, Simul. Mater. Sci. Eng., 17, 064006, doi: 10.1088/0965-0393/17/6/064006.
  • Bernacki, M., Loge, R., Coupez, T., 2011, Level set framework for the finite-element modelling of recrystallization and grain growth in polycrystalline materials, Scripta Mat., 64, 525-528.
  • Bernard, P., Bag, S., Huang, K., Loge, R. E., 2011, A two-site mean field model of discontinuous dynamic recrystallization, Materials Science and Engineerings A 528, 7357-7367.
  • Bohatier, C, Chenot, J.-L., 1985, Finite element formulations for non-steady-state large viscoplastic deformation, Int. J. for Numerical Methods in Engineering, 21,9, 1697-1708.
  • Bonte, M., Fourment, L., Do, T., van den Boogaard, A., Huetink, J., 2010, Optimization of forging processes using Finite Element simulations, Structural and Multidisciplinary Optimization, 42, 5, 797-810.
  • Bossavit, A., 1993, Electromagnetisme en vue de la modelisation, Mathematiques et applications, 14, Springer-Verlag, Paris, France (in French).
  • Bouchard, P.-O., Bourgeon, L., Fayolle, S. Mocellin, K., 2011, An enhanced Lemaitre model formulation for materials processing damage computation, Int. J. Mater. Form., 4(3), 299-315.
  • Brahme, A., Alvi, M. H., Saylor, D., Fridy, J., Rolett, A. D., 2006, 3D reconstruction of microstructure in a commercial purity aluminum, Scripta Mater., 55, 1, 75-80.
  • Brandt, A., 2002, Multiscale Scientific Computation: Review 2001, in Multiscale and Multi resolution Methods, T. Barth, T. Chan, and R. Haimes Editors., Springer, Berlin, 3-95.
  • Brooks, A. N., Hughes, T. J. R., 1982, Streamline up-wind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Computer Methods in Applied Mechanics and Engineering, 32, 199-259.
  • Cao, T.S., Gaillac, A., Montmitonnet, P., Bouchard, P.-O., 2013, Identification methodology and comparison of phenom-enological ductile damage models via hybrid numerical-experimental analysis of fracture experiments conducted on a zirconium alloy, International Journal of Solids and Structures, 50, 24, 3989-3999.
  • Cao, T.-S, Gachet, J.-M, Montmitonnet, P., Bouchard, P.-O., 2014, A Lode-dependent enhanced Lemaitre model for ductile fracture prediction at low stress triaxiality, Engi¬neering Fracture Mechanics, 124-125, 80-96.
  • Cao, T.S., Maire, E., Verdu, C, Bobadilla, C, Lasne, P., Montmitonnet P., Bouchard P.-O., 2014b, Characteriza¬tion of ductile damage for a high carbon steel using 3D X-ray micro-tomography and mechanical tests - Application to the identification of a shear modified GTN model, Computational Materials Science, 84, 175-187.
  • Cardinaux, D., 2008, Etude et modelisation numerique 3D par elements finis d'un precede de traitement thermique de toles embouties apres chauffage par induction : application a un renfort de pied central automobile, PhD Thesis, Mines Paristech, Sophia-Antipolis, France (in French).
  • Cardinaux,-D., Bay, F., Chastel, Y., 2010, A coupled multi-physics model for induction heat treatment processes, Computer Methods in Materials Science, 10, 4, 307-312.
  • Chang, K., Feng, W., Chen, L.Q., 2009, Effect of second-phase particle morphology on grain growth kinetics, Acta Ma¬ter., 57, 5229-5236.
  • Chen, L.-Q., 1995, A novel computer simulation technique for modeling grain growth, Scr. Metall. Mater., 32, 1, 115-120.
  • Chen, L.-Q., 2002, Phase-field models for microstructure evolution, Ann. Rev. Mater. Res., 32, 113-140.
  • Chenot, J.-L., 1984, A velocity approach to finite element calcu¬lation of elastoplastic and viscoplastic deformation processes, Engineering Computations, 5, 1, 2-9.
  • Chenot, J.-L., Beraudo, C, Bernacki, M., Fourment, L., 2014, Finite element simulation of multi material metal forming, 11th International Conference on Technology of Plasticity, Procedia Engineering 10/2014; 81:2427-2432. DOI: 10.1016/j.proeng.2014.10.345.
  • Chenot, J.L., Fourment, L., Mocellin, K., 2002, Numerical treatment of contact and friction in FE simulation of forming processes, J. Mater. Process. Technol., 125-126, 45-52.
  • Chinesta, F., Cueto, E., 2014, Introduction, in PGD-Based Modeling of Materials, Structures and Processes, ESAFORM Bookseries in material forming, Springer International Publishing, 1-24.
  • Codina, R., Gonzalez-Ondina, J. M., Diaz-Hernandez, G., Prin¬cipe, J., 2008, Finite element approximation of the modified Boussinesq equations using a stabilized formulation, International Journal for Numerical Methods in Fluids, 57, 1249-1268.
  • Collins, J. B., Levine, H., 1985, Diffuse interface model of diffusion-limited crystal growth, Phys. Rev. B, 31, 9, 6119.
  • Cornfield, G. C, Johnson, R. H., 1973,Theoretical predictions of plastic flow in hot rolling including the effect of various temperature distributions, J. Iron Steel Inst., 211, 567.
  • Coupez T., Digonnet H., Ducloux R., 2000, Parallel meshing and remeshing, Applied Mathematical Modelling, 25, 153-157.
  • Dawson, P. R., 2000, Computational crystal plasticity, Int J. Solids Struct., 37,1-2, 115-130.
  • Dawson, P. R., Miller, M. P., Han, T.-S., Bernier, J.-L., 2005, An accelerated methodology for the evaluation of critical properties in polyphased alloys, Metall. Mater. Trans., A 36, 1627-1641.
  • Delalondre, F., 2008, Simulation and 3-D analysis of adiabatic shear bands in high speed metal forming processes, PhD Mines ParisTech, Sophia-Antipolis, 243 (in French).
  • Ducloux, R., Barbelet, M., Fourment, L., 2013, Automatic opti¬mization of a complete manufacturing chain, NUMFORM, AIP Conf Proc. 1532, 665-670.
  • Ejday, M., Fourment, L., 2010, Metamodel assisted multi-objective optimization for metal forming applications, Mecanique & Industries, 11, 3-4, 223-233.
  • El Khaoulani, R., Bouchard, P.-O., 2012, An anisotropic mesh adaptation strategy for damage and failure in ductile ma¬terials, Finite Elements in Analysis and Design, 59, 1-10
  • Elsey, M., Esedoglu, S., Smereka, P., 2009, Diffusion generated motion for grain growth in two and three dimensions, J. Comput. Phys., 228, 8015-8033.
  • Fabiano, A.-L., Loge, R., Bernacki, M., 2014, Assessment of simplified 2D grain growth models from numerical experiments based on a level set framework, Comp. Mater. Set, 92, 305-312.
  • Fourment, L., Chenot J. L., 1994, Adaptive remeshing and error control for forming processes, Revue Europeenne des Elements finis, 3, 2, 247-279.
  • Fourment, L., Chenot J. L., Mocellin K., 1999, Numerical formulations and algorithms for solving contact problems in metal forming simulation, International Journal for Numerical Methods in Engineering, 46, 9, 1435-1462.
  • Fourment, L., Popa, S., Barboza, J., 2004, A Quasi-Symmetric Contact Formulation For 3D Problems. Application To Prediction Of Tool Deformation In Forging, 8th International Conference on Numerical Methods in Industrial Forming Processes (NUMIFORM), Columbus, Ohio, ATP Conf. Proc. 712, 2240.
  • Fourment, L., 2007, Meta-model based optimisation algorithms for robust optimization of 3D forging sequences, in 10th ESAFORM Conference on Material Forming, Pts A and B, E. Cueto and F. Chinesta, Editors, 21-26.
  • Fourment, L., 2008, A quasi-symmetric formulation for contact between deformable bodies, European Journal of Computational Mechanics, 17, 5-7, 907, 918.
  • Gachet, J.-M., Delattre, G., Bouchard, P.-O., 2014, Fracture mechanisms under monotonic and non-monotonic low Lode angle loading, Engineering Fracture Mechanics, 124-125, 121-141.
  • Galeao, A.C., Do Carmo, E. G. D., 1988, A consistent approximate upwind Petrov-Galerkin method for convection-dominated problems, Computer Methods In Applied Mechanics and Engineering, 68, 1, 83-95.
  • Hill, R., 1948, A theory of the yielding and plastic flow of anisotropic metals. Proc. Roy. Soc, London, 193, 281-297.
  • Hitti, K., Laure, P., Coupez, T., Silva, L., Bernacki, M., 2013, Precise generation of complex statistical Representative Volume Elements (REVs) in a finite element context, Comp. Mater. Sci., 61, 224-238.
  • Gruau, C, Coupez, T., 3D tetrahedral, unstructured and anisotropic mesh generation with adaptation to natural and multidomain metric, Comp. Meth in Appl. Mech and Engg., 194, 48-49, 4951-4976.
  • Habraken, A.-M., Cescotto, S., 1998, Contact between deformable solids, the fully coupled approach, Mathematical & Computer Modelling, 28 (4-8), 153-169.
  • Hachem, E., Jannoun, G, Veysset, J., Henri, M., Pierrot, R., Poitrault I., Massoni E., Coupez T., 2013, Modeling of heat transfer and turbulent flows inside industrial furnaces, Simulation Modelling Practice and Theory, 30, 35-53.
  • Hallberg, H., 2013, A modified level set approach to 2D modeling of dynamic recrystallization, Modelling Simul. Ma¬ter. Sci. Eng., 21,8, 085012.
  • Hallquist, J. O., Goudreau, G. L., Benson, D. J., 1985, Sliding interfaces with contact-impact in large-scale Lagrangian computations, Comput. Meth. Appl. Mech. Engng., 51, 1-3, 107-137.
  • Hirt, G, Kopp, R., Hofmann, O., Franzke, M., Barton, G, 2007, Implementing a high accuracy Multi-Mesh Method for incremental Bulk Metal Forming, CIRP Annals-Manufacturing Technology, 56, 313-316.
  • Iwata, K., Osakada, K., Fujino, S., 1972, Analysis of hydrostatic extrusion by the finite element method., Transactions of theASME, B, 94-2, 697-703.
  • Jaouen, O., Costes, F., Barbelet, M., Lasne, P., 2014a, From continuous casting to rolling process simulation with a full 3D powerful software tool, 1st ESTAD & 31st JSI, 7-8 April, Paris.
  • Jaouen, O., Costes, F., Lasne, P., Fourment, C, Barbelet, M., 2014b, Numerical simulation of a shell forming, from hollow ingot to the final product, with a powerful software tool, 2nd International Conference on Ingot Casting Rolling & Forging, ICRF2014, Milano.
  • Jin, Y., Lin, B., Bernacki, M., Rohrer, G.S., Rollett, A.D., Boz-zolo N., 2014, Annealing twin development during re-crystallization and grain growth in pure nickel, Material Sci. and Engg. A, 597, 295-303.
  • Karma, A., 2001, Phase-Field Formulation for Quantitative Modeling of Alloy Solidification, Phys. Rev. Lett., 87, 115701.
  • Kim, N., Machida, S., Koboyashi, S., 1990, Ring rolling process simulation by the three dimensional finite element method, Int. J. Machine Tools and Manufacture, 30, 569-577.
  • Militzer, M., 2011, Phase field modeling of microstructure evolution in steels, Cur. Op. Solid St. Mater. Sci., 15, 106-115.
  • Moelans, N., Wendler, F., Nestler, B., 2009, Comparative study of two phase-field models for grain growth, Comp. Mater. Sci., 46, 479-490.
  • Mole, N., Chenot, J. -L., Fourment, L., 1996, A velocity based approach including acceleration to the finite element computation of viscoplastic problems, Int. J. Numer. Methods Engng., 39, 3439-51.
  • Mukherjee, M., Prahl, U., Bleck, W., 2010, Modelling of microstructure and flow stress evolution during hot forging, Steel Research Int., 81, 1102-1116.
  • Nagata, T., 2005, Simple local interpolation of surfaces using normal vectors, Computer Aided Geometric Design, 22, 327-347.
  • Nagai, T., Ohta, S., Kawasaki, K., Okuzono, T., 1990, Computerm simulation of cellular pattern growth in two and three dimensions, Phase Trans., 28, 177-211.
  • Nahshon, K., Hutchinson, J., 2008, Modification of the Gurson model for shear failure, Eur. J. Mech. A/Solids, 27, 1, 1-
  • Nedelec, J. C, 1986, A new family of mixed finite elements in R3, Numer. Math., 50, 57-81.
  • Page, D. L., Sun, Y., Koschan, A. F., Paik, J., Abidi, M. A., 2002, Normal Vector Voting: Crease Detection and Curvature Estimation on Large, Noisy Meshes, Graphical Models, 64, 199-229.
  • Osher, S., Sethian, J. A., 1988, Fronts propagating with curva-ture-dependent speed: Algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 79, 12-49, doi: 10.1016/0021 -9991 (88)90002-2.
  • Piekos, K., Tarasiuk, J., Wierzbanowski, K., Bacroix, B., 2008a, Stochastic vertex model of recrystallization, Comp. Mater. Sci., 42, 1, 36-42.
  • Piekos, K., Tarasiuk, J., Wierzbanowski, K., Bacroix, B., 2008b, Generalized vertex model of recrystallization - Application to polycrystalline copper, Comp. Mater. Sci., 42, 4, 584-594.
  • Ramadan, M., Fourment, L., Digonnet, H., 2009, A parallel two mesh method for speeding-up progresses with localized deformations: application to cogging Int. J. of Material Forming, 2, Supplement 1, 581-584.
  • Resk, H., Delannay, L., Bernacki, M., Coupez, T., Loge, R.E., 2009, Adaptive mesh refinement and automatic remeshing in crystal plasticity finite element simulations, Modelling Simul. Mater. Sci. Eng., 17, 075012.
  • Rey, B., Mocellin, K., Fourment, L., 2008, A nodenested Galerkin multigrid method for metal forging simulation, Computing and Visualization in Science, 11,1, 17-25.
  • Rollett A.D., Raabe D., 2001, A hybrid model for mesoscopic simulation of recrystallization, Comput. Mater. Sci., 21, 69-78.
  • Roux, E., 2011, Mechanical joining- Process optimization strategies and identification of materials mechanical behaviors, PhD at Ecole des Mines de Paris, Sophia Antipolis (in French).
  • Roux, E., Bouchard, P.-O., 2011, Numerical investigation of ductile damage parameters identification: benefit of local measurements, A. J. Kassab, E. A. Divo Editors, the 7th International Conference on Inverse Problems in Engineering (ICIPE), May 2011, Orlando, United States. Centecorp Publishing, 221-226.
  • Roux, E., Bernacki, M., Bouchard, P.-O., 2013, A level set and anisotropic adaptive remeshing strategy for the modeling of void growth under large plastic strain, Computational Materials Science, 68, 32-46.
  • Roux, E., Shakoor, M., Bernacki, M., Bouchard, P.-O., 2014, A new finite element approach for modelling ductile damage void nucleation and growth - analysis of loading path effect on damage mechanisms, Modelling Simul. Mater. Sci. Eng., 22, 075001, doi:10.1088/0965-0393/22/7/075001.
  • Ryckelynck, D., 2009, Hyper-reduction of mechanical models involving internal variables, Int. J. Numer. Meth. Engng, 77, 1, 75-89.
  • Saby, M., Bernacki, M., Roux, E., Bouchard, P.-O., 2013, Three-dimensional analysis of real void closure at the mesoscale during hot metal forming processes, Computational Materials Science, 77, 194-201.
  • Saby, M., Bernacki, M., Bouchard, P.-O., 2014, Understanding and modeling of void closure mechanisms in hot metal forming processes: a multiscale approach, 11th International Conference on Technology of Plasticity, ICTP, 19-24 October 2014, Nagoya Congress Center, Nagoya, Japan.
  • Sethian, J.A., 1996, Level Set Methods, Cambridge University Press, Cambridge.
  • Song, G, Bjorge, T., Holen, J., Magnussen, B. F., 1997, Simulation of fluid flow and gaseous radiation heat transfer in a natural gas-fired furnace, International Journal of Numerical Methods for Heat and Fluid Flow, 7, 169-182.
  • Strano, M. A, 2008, Technique for FEM optimization under uncertainty of time-dependent process variables in sheet metal forming, Int. J. Mater. Form., 1, 13-20.
  • Surdon, G, Chenot, J.-L., 1987, Finite element calculation of three-dimensional hot forging, Int. J. Numer. Meth. Eng., 24, 2107-2117.
  • Syha, M., Weygand, D., 2010, A generalized vertex dynamics model for grain growth in three dimensions, Modelling Simul. Mater. Sci. Eng., 18, 015010.
  • Takaki, T., Hisakuni, Y., Hirouchi, T., Yamanaka, A., Tomita, Y., 2009, Multiphase-field simulations for dynamic recrystallization, Comput. Mater. Sci., 45, 881-888.
  • Teodorescu, M., Lasne, P., Loge, R., 2007, Modeling recrystallization for 3D multi-pass forming processes, Materials Science Forum, 558-559, 1201-1206.
  • Traore, K., Forestier, R., Mocellin, K., Montmitonnet, P., Souchet M., 2001, Three dimensional finite element simulation of ring rolling, Proc. of the 7th International Conference on Numerical Methods in Industrial Forming Processes NUMFORM 2001, ed. by K. Mori, A. A. Balkema, 595-600.
  • Wagoner, R. H., Chenot, J.-L., 2001, Metal forming analysis, Cambridge University Press, Cambridge.
  • Wang, C, Liu, G, 2003, On the stability of grain structure with initial Weibull grain size distribution, Mater. Lett., 57, 28, 4424-4428.
  • Wiebenga, J. H., Weiss, M., Rolfe, B., Van Den Boogaard, A. H., 2013, Product defect compensation by robust optimization of a cold roll forming process, Journal of Materials Processing Technology, 213, 6, 978-986.
  • Weygand, D., Brechet, Y., Lepinoux, J., 2001, A vertex simulation of grain growth in 2D and 3D, Adv. Eng. Mater., 3,1-2, 67-71.
  • Xu, T., Li, M., 2009, Topological and statistical properties of a constrained Voronoi tessellation, Phil. Mag., 89, 349-374.
  • Zabaras, N., Bao, Y., Srikanth, A., Frazier, W. G., 2000, A continuum Lagrangian sensitivity analysis for metal forming processes with applications to die design problems, Int. J. Numer. Meth. Engng, 48, 679-720.
  • Zienkiewicz, O. C, Godbole, K., 1974, Flow of Plastic and Visco-Plastic Solids with Special Reference to Extrusion and Forming Processes, Int. J. Numer. Meth. Eng., 8, 1, 1-16.
  • Zienkiewicz, O.C., Zhu J.Z., 1992, The superconvergent patch recovery (SPR) and adaptive finite element refinement, Computer Methods in Applied Mechanics and Engineering, 101, 207-224.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ca6c49cd-fd60-4586-a526-72cbea98a392
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.