Identyfikatory
Warianty tytułu
Semi-Automatic Algorithm for Optimal Production Well Placement
Języki publikacji
Abstrakty
Artykuł poświęcono zastosowaniu tzw. algorytmu nietoperza do rozwiązania problemu określenia optymalnej liczby i położenia odwiertów wydobywczych. W procesie optymalizacji jako funkcję celu wykorzystano bieżącą wartość netto (ang. net present value – NPV). Testy zbudowanego algorytmu przeprowadzono na przykładzie modelu symulacyjnego złoża PUNQ-S3, dostępne- go na zasadach open source. Zastosowany algorytm został wyposażony w dodatkowe mechanizmy zwiększające jego efektywność: mechanizm próbkowania sześcianu łacińskiego (ang. Latin hypercube sampling – LHS) oraz mechanizm eliminowania położeń odwiertów poza modelem. Przeprowadzone testy wskazują na bardzo dobrą zbieżność zbudowanego algorytmu w procesie optymalizacji.
The article is devoted to the application of the so-called bat algorithm to solve the problem of determining the optimum number and location of production wells. This algorithm was proposed by Yang in 2010, and since then has been successfully used in solving both theoretical and practical optimization problems. The method belongs to a group of swarm optimization methods and in searching for the best solution, the algorithm uses a mechanism of echolocation, similar to the one used by a herd of bats. The current net present value (NPV) was used as a target function in the optimization process. The algorithm was tested on the example of the simulation model of the PUNQ-S3 reservoir available on an OpenSource basis. The applied algorithm was equipped with additional mechanisms increasing its effectiveness: Latin Hypercube Sampling (LHS) algorithm and the mechanism eliminating the locations of wells outside the operational area of the model. The first of the applied improvements ensures a better starting point for the proper optimization process, which significantly improves the convergence of the whole algorithm. The latter mechanism solves a problem specific to the issue in question.
Czasopismo
Rocznik
Tom
Strony
598--605
Opis fizyczny
Bibliogr. 26 poz., rys.
Twórcy
autor
- Instytut Nafty i Gazu - Państwowy Instytut Badawczy, ul. Lubicz 25 A, 31-503 Kraków
Bibliografia
- [1] Askari Firoozjaee R., Khamehchi E.: A novel approach to assist history matching using artificial intelligence. Chem. Eng. Commun. 2015, vol. 202, nr 4, s. 513–514.
- [2] Bakhteeyar H., Maleki A.: Development of two intelligencebased scenarios for prediction of future natural gas consumption. J. Sci. Res. Dev. 2015, vol. 2, nr 1, s. 158–166.
- [3] Barker W.J., Cuypers M., Holden L.: Quantifying uncertainty in production forecasts: another look at the PUNQ-S3 problem. SPE J. 2001, vol. 6, nr 4, s. 433–441.
- [4] Bouzarkouna Z., Ding D.Y., Auger A.: Partially separated metamodels with evolution strategies for well-placement optimization. SPE J. 2013, vol. 18, nr 6, s. 1003–1011, SPE143292-PA.
- [5] Ebrahimi A., Khamehchi E.: A robust model for computing pressure drop in vertical multiphase flow. JNGSE 2015, vol. 26, s. 1306–1316.
- [6] Floris F.J.T., Bush M.D., Cuypers M., Roggero F., Syversveen A.-R.: Methods for quantifying the uncertainty of production forecasts: a comparative study. Pet. Geosci. 2001, vol. 7, s. 87–96.
- [7] Goldberg D.E.: Computer Aided Gas Pipeline Operation Using Genetic Algorithms and Rule Learning (Ph.D. dissertation). University of Michigan, Ann Arbor, Michigan, 1983.
- [8] Guerreiro J.N.C. et al.: Identification of reservoir heterogeneities using tracer breakthrough profiles and genetic algorithms. SPE 39066. Latin American and Caribbean Petroleum Engineering Conference and Exhibition held in Rio de Janeiro, Brazil, 30.08–3.09.1997.
- [9] Güyagüler B., Horne R.N.: Uncertainty assessment of wellplacement optimization. SPE J. 2004, vol. 7, nr 1, s. 24–32, SPE 87663-PA.
- [10] Hazlett R.D., Babu D.K.: Optimal well placement in heterogeneous reservoirs via semi-analytic modeling. SPE J. 2005, vol. 10, nr 3, s. 286–296, SPE 84281-PA.
- [11] Holland J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor, 1975.
- [12] Isebor O.J., Echeverría Ciaurri D., Durlofsky L.: Generalized field-development optimization with derivative-free procedures. SPE J. 2014, vol. 19, nr 5, s. 891–908, SPE-163631-PA.
- [13] Keshavarz M., Naderi M.: Drilling rate of penetration prediction and optimization using response surface methodology and bat algorithm. J. Nat. Gas. Sci. Eng. 2016, vol. 31, s. 829–841.
- [14] Khamehchi E., Rahimzadeh Kivi I., Akbari M.: A novel approach to sand production prediction using artificial intelligence. PSE 2014, vol. 123, s. 147–154.
- [15] Khan K., Sahari A.: A fuzzy c-means bi-sonar-based metaheuristic optimization algorithm. Int. J. Interact. Multimed. Artif. Intell. 2012, vol. 1, nr 7, s. 26–32.
- [16] Komarasamy G., Wahi A.: An optimized K-means clustering technique using bat algorithm. Eur. J. Sci. Res. 2012, vol. 84, nr 2, s. 263–273.
- [17] Lin J.H., Chou C.W., Yang C.H., Tsai H.L.: A chaotic Levy flight bat algorithm for parameter estimation in nonlinear dynamic biological systems. J. Comput. Inf. Technol. 2012, vol. 2, no. 2, s. 56–63.
- [18] Naderi M., Khamehchi E.: Nonlinear risk optimization approach to water drive gas reservoir production optimization using DOE and artificial intelligence. J. Nat. Gas. Sci. Eng. 2016, vol. 31, s. 575–584.
- [19] Onwunalu J.E., Durlofsky L.: A new well-pattern-optimization procedure for large-scale field development. SPE J. 2011, vol. 16, nr 3, s. 594–607, SPE 124364-PA.
- [20] Rasouli H., Rashidi F., Karimi B., Khamehchi E.: A surrogate integrated production modeling approach to long-term gas-lift allocation optimization. Chem. Eng. Commun. 2015, vol. 202, nr 5, s. 647–654.
- [21] Rwechungura R.W., Dadashpour M., Kleppe J.: Application of Particle Swarm Optimization for Parameter Estimation Integrating Production and Time Lapse Seismic Data. SPE 146199-MS, 6–8.09.2011, Aberdeen, UK.
- [22] Wang H., Echeverría-Ciaurri D., Cominelli, A.: Optimal well placement under uncertainty using a retrospective optimization framework. SPE J. 2012, vol. 17, nr 1, s. 112–121, SPE 141950-PA.
- [23] Yang X.-S.: A New Metaheuristic Bat-Inspired Algorithm. [W:] C. Cruz et al. (eds.): Nature Inspired Cooperative Strategies for Optimization, Studies in Computational Intelligence. Springer, Berlin 2010, vol. 284, s. 65–74.
- [24] Yang X.S., Gandomi A.H.: Bat algorithm: a novel approach for global engineering optimization. Eng. Comput. 2012, vol. 29, nr 5, s. 464–483.
- [25] Yeten B., Durlofsky L., Aziz K.: Optimization of nonconventional well type, location, and trajectory. SPE J. 2003, vol. 8, nr 3, s. 200–210, SPE 86880-PA.
- [26] Zandvliet M., Handels M., Essen G.V., Brouwer R., Jansen J.D.: Adjoint-based well-placement optimization Under production constraints. SPE J. 2008, vol. 13, nr 4, s. 392–399, SPE 105797-PA.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ca6a2c20-8684-466c-b315-f697b059dc38