PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of nonmetallic inclusion on strain hardening carbon steel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
On a fragment of the rim of a railway wheel removed from service, the volume of the metal with non-metallic inclusions located near the tread surface was investigated. The use of the microhardness measurement technique made it possible to establish the nature of strain hardening of carbon steel near non-metallic inclusions. It showed that with a normal orientation of the plastic flow relative to the inclusion surface, the metal volumes undergo hardening. In proportion to the appearance of a fraction of the tangential component of the deformation near the nonmetallic inclusion, a decrease in the degree of hardening of the metal was observed.
Rocznik
Tom
Strony
193--198
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
  • Dniprovsk National Transport University Named Academician V. Lazaryan, Lazaryan St., 2, Dnipro, Ukraine, 49010
  • Management of the Pridniprovk Railway, D.Yavornizkogo Av., 108, Dnipro, Ukraine, 49600
  • Dniprovsk National Transport University Named Academician V. Lazaryan, Lazaryan St., 2, Dnipro, Ukraine, 49010
Bibliografia
  • 1. Soares H., T. Zucarelli, M. Vieira, et.al. 2016. “Experimental characterization of the mechanical properties of railway wheels manufactured using class B material”. XV Portuguese Conference on Fracture PCF. 10-12 February 2016, Paço de Arcos, Portugal. Procedia Structural Integrity 1: 265-272.
  • 2. Walther F., D. Eifler. 2004. “Fatigue behaviour of railway wheels at different temperatures”. Mater. Test. 46(Lm): 158-162.
  • 3. Vakulenko I.O. 2016. “Influence of cooling rate on the strength of the rims of railway wheel”. Materials Science 6: 839-842.
  • 4. Ahlström J., B. Karlsson. 1999. “Microstructural evaluation and interpretation of the mechanically and thermally affected zone under railway wheel flats”. Wear 232: 1-14.
  • 5. Vasauskas V., Z. Bazaras, V. Capas. 2005. “Strength anisotropy of railway wheels under contact load”. Мechanika 1: 31-38.
  • 6. Vakulenko I., A. Kawalek, L. Vakulenko, S. Proiydak. 2018. “Influence of perlite dispersion of carbon steel on the fatique”. Metal Forming 3: 243-252.
  • 7. Gubenko S., Y. Proidak, A. Kozlovsky, et. al. 2008. “Influence of nonmetallic inclusions on micro breaks formation in wheel steel and railway wheels”. Transport Problems 3: 77-81.
  • 8. Kosicka E., Kozłowski E., Mazurkiewicz D. 2015. „The use of stationary tests for analysis of monitored residual processes”. Eksploatacja i Niezawodnosc – Maintenance and Reliability 17(4): 604–609. DOI: http://dx.doi.org/10.17531/ein.2015.4.17.
  • 9. Kuslickiyj A.B. 1976. Nemetallicheskie vklyucheniya i ustalostj stali. [In Ukrainian: Non-metallic inclusions and steel fatigue]. Kiev: Tekhnіka.
  • 10. Gubenko S., Y. Proidak. 2012. “Investigation of wear mechanism of tread during operation of railway wheels”. Transport Problems 3: 119-125.
  • 11. Finkelj V.M., O.P. Esina, V.A. Zrayjchenko. 1968. “Nemetallicheskie vklyucheniya i prochnostj stali”. [In Russian: „Non-metallic inclusions and steel strength”]. Dokl. AN SSSR 3: 576-579.
  • 12. Malinauskas K., V. Ostaševičius, R. Daukševičius, V. Grigaliūnas. 2012. „Residual stress in a thin-film microoptoelectromechanical (MOEMS) membrane”. Mechanika 3: 273-279.
  • 13. Gao M.X., H. Song, J. Yang, L.J. Fu. 2019. „Study on residual stress and strain during rail rolling contact of straight U75V rail”. Metalurgija 58(3-4): 203-206.
  • 14. Boljshakov V.I., G.D. Sukhomlin, N.Eh. Pogrebnaya. 2001. “Atlas struktur metallov i splavov”. Dnepropetrovs, Ukraine: Gaudeamus.
  • 15. Kabo E., A. Enberg. 2002. “The influence of defects in rolling contact fatigue”. Brescia: Proc. Workshop Jointly Organized ICF & University Brescia. 15 nov. 2002: 85-93.
  • 16. Knott J.F. 1973. “Fundamentals of fracture mechanics”. London, UK: Butterworths.
  • 17. Chepil R., Vira V., Kharchenko Y., Kulyk V., Duriagina Z. 2018. „The peculiarities of fatigue process zone formation of structural materials”. Diagnostyka 19(4): 27-32. DOI: doi:10.29354/diag/94754.
  • 18. Babich V.K., Yu.P. Gulj, I.E. Dolzhenkov. 1972. Deformacionnoe starenie stali. Moscow: Metallurgiya.
  • 19. Andreyjko І.M., V.V. Kulik, V.І. Prokopecj. 2011. “Doslіdzhennya poshkodzhuvanostі poverkhnі kochennya zalіznichnikh kolі”. Mashinoznavstvo 2: 30-33.
  • 20. Maruschak Pavlo, Sergey Panin, Ilya Vlasov, Olegas Prentkovskis, Iryna Danyliuk. 2015. „Structural levels of the nucleation and growth of fatigue crack in 17Mn1Si steel pipeline after long-term service”. Transport 30(1): 15-23.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ca64c604-ad30-4d04-86ba-7ce76ef5a855
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.