PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Remark on the Daugavet property for complex Banach spaces

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article, we study the Daugavet property and the diametral diameter two properties (DD2Ps) in complex Banach spaces. The characterizations for both Daugavet and Δ-points are revisited in the context of complex Banach spaces. We also provide relationships between some variants of alternative convexity and smoothness, nonsquareness, and the Daugavet property. As a consequence, every strongly locally uniformly alternatively convex or smooth (sluacs) Banach space does not contain Δ-points from the fact that such spaces are locally uniformly nonsquare. We also study the convex diametral local diameter two property and the polynomial Daugavet property in the vector-valued function space A(K,X). From an explicit computation of the polynomial Daugavetian index of A(K,X), we show that the space A(K,X)has the polynomial Daugavet property if and only if either the base algebra A or the range space X has the polynomial Daugavet property. Consequently, we obtain that the polynomial Daugavet property, Daugavet property, DD2Ps, and property (D) are equivalent for infinite-dimensional uniform algebras.
Wydawca
Rocznik
Strony
art. no. 20240004
Opis fizyczny
Bibliogr. 36 poz.
Twórcy
autor
  • Department of Mathematics Education, Dongguk University - Seoul, 04620 (Seoul), Republic of Korea
  • Department of Mathematics Education, Dongguk University - Seoul, 04620 (Seoul), Republic of Korea
Bibliografia
  • [1] J. Diestel and J. J. Uhl, Vector Measures, American Mathematical Society, Providence, R.I., 1977.
  • [2] H. J. Lee and H. Tag, Diameter two properties in some vector-valued function spaces, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales, Serie A. Mathemáticas (RACSAM) 116 (2022), no. 1, 17, DOI: https://doi.org/10.1007/s13398-021-01165-6.
  • [3] P. Wojtaszczyk, Some Remarks on the Daugavet Equation, Proc. Amer. Math. Soc. 115 (1992), no. 4, 1047–1052, DOI: https://doi.org/10.2307/2159353.
  • [4] A. Kamińska and D. Kubiak, The Daugavet property in the Musielak-Orlicz spaces, J. Math. Anal. Appl. 427 (2015), no. 2, 873–898, DOI: https://doi.org/10.1016/j.jmaa.2015.02.035.
  • [5] M. Jung and A. Rueda Zoca, Daugavet points and Δ-points in Lipschitz-free spaces, Studia Math. 265 (2022), 37–55, DOI: https://doi.org/10.4064/sm210111-5-5.
  • [6] M. Acosta, A. Kamińska, and M. Mastyło, The Daugavet property in rearrangement invariant spaces, Trans. Amer. Math. Soc. 367 (2015), no. 6, 4061–4078, DOI: https://doi.org/10.1090/S0002-9947-2014-06166-7.
  • [7] V. Kadets, M. Martín, J. Merí, and D. Werner, Lushness, numerical index 1 and the Daugavet property in rearrangement invariant spaces, Canad. J. Math, 65 (2013), no. 2, 331–348, DOI: https://doi.org/10.4153/CJM-2011-096-2.
  • [8] V. Kadets, R. Shvidkoy, G. Sirotkin, and D. Werner, Banach Spaces with the Daugavet Property, Trans. Amer. Math. Soc. 352 (2000), no. 2, 855–873, DOI: https://doi.org/10.1090/S0002-9947-99-02377-6.
  • [9] T. Abrahamsen, R. Haller, V. Lima, and K. Pirk, Delta-and Daugavet points in Banach spaces, Proc. Edin. Math. Soc. 63 (2020), no. 2, 475–496, DOI: https://doi.org/10.1017/S0013091519000567.
  • [10] D. Werner, Recent progress on the Daugavet property, Irish Math. Soc. Bull. 46 (2001), 77–97.
  • [11] J. Bourgain and H. P. Rosenthal, Martingales Valued in Certain Subspaces of L1, Israel J. Math. 37 (1980), no. 1–2, 54–75, DOI: https://doi.org/10.1007/BF02762868.
  • [12] V. Kadets and D. Werner, A Banach space with the Schur and the Daugavet property, Proc. Amer. Math. Soc. 136 (2004), no. 6, 1765–1773, DOI: https://doi.org/10.1090/S0002-9939-03-07278-2.
  • [13] Y. Ivakhno and V. Kadets, Unconditional sums of spaces with bad projections, Visn. Khark. Univ. Ser. Mat. Pryki. Mat. Mekh. 645 (2004), no. 54, 30–35.
  • [14] V. Kadets, The diametral strong diameter 2 property of Banach spaces is the same as the Daugavet property, Proc. Amer. Math. Soc. 149 (2020), no. 6, 2579–2582, DOI: https://doi.org/10.1090/proc/15448.
  • [15] M. Martín, Y. Perreau, and A. Rueda Zoca, Diametral notions for elements of the unit ball of a Banach space, Diss. Math. 594 (2024), 1–61, DOI: https://doi.org/10.4064/dm230728-21-3.
  • [16] V. Kadets, M. Martín, and J. Merí, Norm inequalities for operators on Banach spaces, Indiana Univ. Math. J. 1 (2007), no. 1, 2385–2411, DOI: https://doi.org/10.1512/iumj.2007.56.3046.
  • [17] T. Abrahamsen, V. Lima, A. Martiny, and Y. Perreau, Asymptotic geometry and Delta-points, Banach. J. Math. Anal. 16 (2022), 57, DOI: https://doi.org/10.1007/s43037-022-00210-9.
  • [18] A. Kamińska, H. J. Lee, and H. Tag, Daugavet and diameter two properties in Orlicz-Lorentz spaces, J. Math. Anal. Appl. 529 (2024), no. 2, DOI: https://doi.org/10.1016/j.jmaa.2023.127289.
  • [19] R. C. James, Uniformly non-square Banach spaces, Ann. Math. 80 (1964), no. 3, 542–550, DOI: https://doi.org/10.2307/1970663.
  • [20] T. Wang, Z. Shi, and Y. Li, On uniformly nonsquare points and nonsquare points of Orlicz spaces, Comment. Math. Univ. Carolin. 33 (1992), no. 3, 477–484.
  • [21] Y. S. Choi, D. García, M. Maestre, and M. Martín, The Daugavet equation for polynomials, Studia Math. 178 (2007), no. 1, 63–84, DOI: https://doi.org/10.4064/sm178-1-4.
  • [22] Y. S. Choi, D. García, S. K. Kim, and M. Maestre, Some geometric properties of disk algebras, J. Math. Anal. Appl. 409 (2014), no. 1, 147–157, DOI: https://doi.org/10.1016/j.jmaa.2013.07.002.
  • [23] M. Martín, J. Merí, and M. Popov, The polynomial Daugavet property for Atomless L1(μ)-spaces, Arch. Math. 94 (2010), no. 4, 383–389, DOI: https://doi.org/10.1007/s00013-010-0105-5.
  • [24] G. Choi, M. Jung, and H. Tag, On the Lipschitz numerical index of Banach spaces, Collect. Math. (2023), DOI: https://doi.org/10.1007/s13348-023-00421-9.
  • [25] K. Pirk, Diametral diameter two properties, Daugavet-, and Δ-points in Banach spaces, Ph.D. Dissertation, Dissertationes Mathematicae Universitatis Tartuensis, vol. 133, 2020.
  • [26] M. Kato, L. Maligranda, and Y. Takahashi, On James and Jordan-von Neumann constants and the normal structure coefficient of Banach spaces, Stud. Math. 144 (2001), no. 3, 275–295, DOI: https://doi.org/10.4064/sm144-3-5.
  • [27] J. Hardtke, Absolute sums of Banach spaces and some geometric properties related to rotundity and smoothness, Banach. J. Math. Anal. 8 (2014), no. 1, 295–334, DOI: https://doi.org/10.15352/bjma/1381782101.
  • [28] T. Abrahamsen, P. Hájek, O. Nygaard, J. Talponen, and S. Troyanski, Diameter 2 properties and convexity, Studia Math. 232 (2016), no. 3, 227–242, DOI: https://doi.org/10.4064/sm8317-4-2016.
  • [29] V. Kadets, M. Martín, J. Merí, and R. Payá, Convexity and smoothness of Banach spaces with numerical index one, Illinois J. Math. 53 (2009), no. 1, 163–182, DOI: https://doi.org/10.1215/ijm/1264170844.
  • [30] H. G. Dales, Banach Algebras and Automatic Continuity, Oxford University Press, New York, 2000.
  • [31] G. M. Leibowitz, Lectures on Complex Function Algebras, Scott, Foresman and Company, 1970.
  • [32] B. Cascales, A. Guirao, and V. Kadets, A Bishop-Phelps-Bollobás type theorem for uniform algebras, Adv. Math. 240 (2013), 370–382, DOI: https://doi.org/10.1016/j.aim.2013.03.005.
  • [33] J. Diestel, Sequences and Series in Banach space, Springer, New York, 1984.
  • [34] S. Dineen, Complex analysis on infinite dimensional spaces, Springer Monographs in Mathematics, Springer, London, 1999.
  • [35] E. Santos, The polynomial Daugavetian index of a complex Banach space, Arch. Math. 112 (2019), no. 4, 407–416, DOI: https://doi.org/10.1007/s00013-018-1268-8.
  • [36] M. Martín, The Daugavetian index of a Banach space, Taiwan. J. Math. 7 (2003), no. 4, 631–640, DOI: https://doi.org/10.11650/twjm/1500407582.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ca63d7f4-a2b4-4a99-bf91-e4779e538393
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.