PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Structural optimization of internally reinforced beams subjected to uncoupled and coupled bending and torsion loadings for industrial applications

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, novel types of internally reinforced hollow-box beams were structurally optimized using a Finite Element Updating code built in MATLAB. In total, 24 different beams were optimized under uncoupled bending and torsion loads. A new objective function was defined in order to consider the balance between mass and deflection on relevant nodal points. New formulae were developed in order to assess the efficiency of the code and of the structures. The efficiency of the code is determined by comparing the Finite Element results of the optimized solutions using ANSYS with the initial solutions. It was concluded that the optimization algorithm, built in Sequential Quadratic Programming (SQP) allowed to improve the effective mechanical behavior under bending in 8500%, showing a much better behavior than under torsion loadings. Therefore, the developed algorithm is effective in optimizing the novel FEM models under the studied conditions.
Rocznik
Strony
731--753
Opis fizyczny
Bibliogr. 35 poz., il. (w tym kolor.), wykr.
Twórcy
autor
  • Department of Mechanical Engineering, University of Minho, Campus of Azurém,4800-058 Guimarães, Portugal
  • Department of Mechanical Engineering, University of Minho, Campus of Azurém,4800-058 Guimarães, Portugal
Bibliografia
  • [1] De Meireles, J.F.: Análise dinâmica de estruturas por modelos de elementos finitos identificados experimentalmente. PhD Thesis, University of Minho, 2007.
  • [2] Bin, X., Nan, C. and Huajun, C.: An integrated method of multi-objective optimization for complex mechanical structure, Advances in Engineering Software 41, 277-285, 2010.
  • [3] Brill, E. D., Chang, S-Y. and Hopkins, L. D.: Modeling to generate alternatives: The HSJ approach and an illustration using a problem in land use planning. Manage Sci, 28:221, 1982.
  • [4] Brill, E. D., Flach, J. M., Hopkins, L. D. and Ranjithan, S.: MGA: A decision support system for complex, incompletely defined problems. IEEE Trans Syst Man Cybern, 20:745, 1990.
  • [5] Baugh, J. W., Caldwell, S. C. and Brill, E. D.: A mathematical programming approach for generating alternatives in discrete structural optimization, Eng Optim, 28:1, 1997.
  • [6] Zárate, B. A. and Caicedo, J. M.: Finite element model updating: Multiple alternatives. Elsevier, Engineering Structures, 30, 3724-3730, 2008.
  • [7] Bakir, P. G., Reynders, E. and De Roeck, G.: An improved finite element model updating method by the global optimization technique Coupled Local Minimizers, Computers and Structures, 86, 1339-1352, 2008.
  • [8] Kalanta, S., Atkociunas, J. and Venskus, A.. Discrete optimization problems of the steel bar structures. Engineering Structures, 31, 1298-1304, 2009.
  • [9] Silva, H. M., De Meireles, J. F.: Determination of the Material/Geometry of the section most adequate for a static loaded beam subjected to a combination of bending and torsion. Materials Science Forum, 730-732, 507-512, 2013.
  • [10] Silva, H. M.:Determination of the Material/Geometry of the section most adequate for a static loaded beam subjected to a combination of bending and torsion. MSc Thesis, University of Minho, 2011
  • [11] Lee, J., Kim, S-M., Park, H-S. and Woo, B-H.: Optimum design of cold-formed steel channel beams using micro Genetic Algorithm, Engineering Structures, 27,17-24, 2005.
  • [12] Liu, H., Igusa, T. and Schafer, B.W.: Knowledge-based global optimization of cold-formed steel columns, Thin-Walled Structures, 42, 785-801, 2004.
  • [13] Magnucka-Blandzi, E., Magnucki, K..: Buckling and optimal design of coldformed thin-walled beams: Review of selected problems, Thin-Walled Structures, 49, 554-561, 2011.
  • [14] Leng, J., Guest, J. K. and Schafer, B. W.: Shape optimization of cold-formed steel columns, Thin-Walled Structures, 49, 1492-1503, 2011.
  • [15] Theofanous, M., Chan, T. M. and Gardner, L..: Structural response of stainless steel oval hollow section compression members, Engineering Structures, 31, 922-934, 2009.
  • [16] Lagaros, N. D., Psarras, L. D., Papadrakakis, M. and Panagiotou, G..: Optimum de-sign of steel structures with web openings, Engineering Structures, 30, 2528-2537, 2008.
  • [17] Tsavdaridis, K. D. and D'Mello, C.: Optimisation of novel elliptically-based web opening shapes of perforated steel beams, Journal of Constructional Steel Research, 76, 39-53, 2012.
  • [18] McKinstray, R., Lim, J.B.P., Tanyimboh, T.T., Phan D.T. and Sha, W..: Optimal design of long-span steel portal frames using fabricated beams, Journal of Constructional Steel Research, 104, 104-114, 2015.
  • [19] Tran, T., Li, L-Y.: Global optimization of cold-formed steel channel sections. Thin-Walled Structures, 44, 399-406, 2006.
  • [20] Silva, H.M., De Meireles, J.F..: Feasibility of internally reinforced thin-walled beams for industrial applications, Applied Mechanics and Materials, 775, 119-124, 2015.
  • [21] Silva, H.M., De Meireles, J.F..: - Feasibility of Internally Stiffened Thin-Walled Beams for Industrial Applications [submitted]
  • [22] Schittkowski, K..: NLQPL: A FORTRAN-Subroutine Solving Constrained. Nonlinear Programming Problems, Annals of Operations Research, 5, 485-500, in http://wwwmathworks.com, 1985.
  • [23] Biggs, M.C..: Constrained Minimization Using Recursive Quadratic Programming, Towards Global Optimization. LCW Dixon and GP Szergo, eds North-Holland 341-349, in http://wwwmathworkscom, 1975.
  • [24] Han, S.P.: A Globally Convergent Method for Nonlinear Programming, Journal of Optimization Theory and Applications, 22:297, 1977 in http://www.mathworks.com.
  • [25] Powell, M.J.D.: The Convergence of Variable Metric Methods for Nonlinearly Constrained Optimization Calculations, Nonlinear Programming 3, OL Mangasarian, RR Meyer and SM Robinson, eds, Academic Press, in http://www.mathworks.com,1978a.
  • [26] Powell, M.J.D.: A Fast Algorithm for Nonlinearly Constrained Optimization Calculations , Numerical Analysis, GA Watson ed, Lecture Notes in Mathematics, Springer Verlag, 630, in http://wwwmathworks.com, 1978b.
  • [27] Fletcher, R.: Practical Methods of Optimization, John Wiley and Sons, in http://www.mathworks.com, 1987.
  • [28] Gill, P.E., Murray, W. and Wright, M.H..: Practical Optimization, London, Academic Press, in http://www.mathworks.com, 1981.
  • [29] Powell, M.J.D.: Variable Metric Methods for Constrained Optimization. Mathematical Programming: The State of the Art, A Bachem, M Grotschel and B Korte, eds Springer Verlag, 288-311, in http://wwwmathworks.com, 1983.
  • [30] Hock, W., Schittkowski, K. A.: Comparative Performance Evaluation of 27 Non-linear Programming Codes, Computing 30:335, in http://www.mathworks.com, 1983.
  • [31] http://www.mathworks.com/help/optim/ug/constrained-nonlinear-optimizationalgorithms.html. Accessed 11 March 2016.
  • [32] http://www.mathworks.com/help/optim/ug/fmincon.html. Accessed 11 March 2016.
  • [33] http://www.mathworks.com/help/optim/ug/optimization-theoryoverview.html#bqa jby. Accessed 11 March 2016.
  • [34] Silva, H.M., De Meireles, J.F..: Effective Mechanical Behavior of Sandwich Beams under Uncoupled Bending and Torsion Loadings, Applied Mechanics and Materials, 590, 58-62, 2014.
  • [35] Silva, H. M., De Meireles, J. F.: Effective Stiffness Behavior of Sandwich Beams under Uncoupled Bending and Torsion Loadings, 852, 469-475, 2016.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ca625214-f22e-47ff-8e54-6d6310143732
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.