PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of selected remote sensing methods in detecting and tracking marine pollution

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper discusses the use of satellite tracking during an environmental disaster at sea, and it assesses the possibility of using remote sensing imagery captured by satellites using multispectral cameras and synthetic-aperture radar (SAR). This study is based on scientific literature and satellite tracking of the X-Press Pearl container ship disaster, which involved the EO-Browser platform. The purpose of this paper is to assess selected remote sensing methods for detecting and tracking marine pollution. The first part of the paper discusses satellite tracking of the X-Press Pearl disaster. The second part focuses on evaluation of the quality of remote sensing imagery from satellites and aircraft, when taking weather conditions into consideration. It should be noted that the research was conducted in real time when the incident occurred. News about the accident was also tracked in real time, allowing for a thorough analysis of the incident and, thus, an assessment of the different sensing systems. Although research on such disasters is crucial for the protection of the marine environment, scientific literature on this topic remains limited. This research area is very important for the protection of the marine environment, in the context of looking for solutions to these issues.
Rocznik
Strony
102--108
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
  • Unibaltic Ltd. 14E Tama Pomorzńska St., Szczecin 70-030, Poland
  • Maritime University of Szczecin, Faculty of Economics and Transport Engineering 11 Henryka Pobożnego St., Szczecin 70-506, Poland
Bibliografia
  • 1. AM Gdynia (2001) Widzialność pozioma. [Online]. http:// web.archive.org/web/20120114143005/http://ocean.am. gdynia.pl/student/meteo1/widzialnosc.html [Accessed: June 25, 2021].
  • 2. Brown, C.E. (2011) Oil Spill Science and Technology – Chapter 7 Laser Fluorosensors. Elsevier, pp. 171–182.
  • 3. Deja, A., Kabulak, P. & Kaup, M. (2018) A concept of a model for the management of ship-generated waste and cargo residues in port areas. 18th International Multidisciplinary Scientific GeoConference SGEM 2018.
  • 4. Deja, A., Ulewicz, R. & Kyrychenko, Y. (2021) Analysis and assessment of environmental threats in maritime transport. 14th International scientific conference on sustainable, modern, and safe transport, Elsevier 2021.
  • 5. Economic Commission for Europe (2006) Strategies for monitoring and assessment of transboundary rivers, lakes and groundwaters. [Online]. Available from: https:// unece.org/DAM/env/water/publications/assessment/StrategiesM_A.pdf [Accessed: June 6, 2021].
  • 6. EO Browser – Sentinel Hub [Online]. Available from: https://apps.sentinel-hub.com/eo-browser/ [Accessed: May 20, 2021].
  • 7. European Space Agency (2021a) Sentinel-1 [Online]. Available from https://sentinel.esa.int/web/sentinel/missions/ sentinel-1 [Accessed: December 30, 2021].
  • 8. European Space Agency (2021b) Sentinel-2 [Online]. Available from https://sentinel.esa.int/web/sentinel/missions/ sentinel-2 [Accessed: December 30, 2021].
  • 9. Fingas, M.F. (2017) Oil Spill Science and Technology. Second Edition. Elsevier.
  • 10. Fingas, M.F. & Brown, C.E. (2005) An update on oil spill remote sensors. Proceedings of the Twenty-eighth AMOP Technical Seminar, Environment Canada, Ottawa, ON, pp. 825–859.
  • 11. Fingas, M.F. & Brown, C.E. (2015) Handbook of Oil Spill Science and Technology – Oil Spill Remote Sensing. Wiley, Canada, chapter 12, pp. 313–356.
  • 12. Fingas, M.F. & Brown, C.E. (2017) A review of oil spill remote sensing. Sensors 18, 91, Multidisciplinary Digital Publishing Institute.
  • 13. Gucma, M. (2021) Ocena wybranych metod satelitarnego monitoringu zdalnego do wykrywania i śledzenia zanieczyszczeń środowiska morskiego. Master’s Thesis, Maritime University of Szczecin.
  • 14. Hafeez, S., Wong, M.S., Abbas, S., Kwok, C.Y.T., Nichol, J., Lee, K.H., Tang, D. & Pun, L. (2018) Detection and Monitoring of Marine Pollution Using Remote Sensing Technologies. IntechOpen.
  • 15. Khorram, S., Koch, F.H., van der Wiele, C.F. & Nelson, S.A.C. (2012) Remote Sensing. New York, NY: Springer.
  • 16. Liu, C., Chen, Z., Shao, Y., Chen, J., Tuya, H. & Pan, H. (2019) Research advances of SAR remote sensing for agriculture applications: A review. Journal of Integrative Agriculture 18(3), pp. 506–525.
  • 17. Müllerová, J., Brůna, J., Bartaloš, T., Dvořák, P., Vítková, M. & Pyšek, P. (2017) Timing is important: Unmanned aircraft vs. satellite imagery in plant invasion monitoring. Frontiers in Plant Science 8, pp. 1–3.
  • 18. Müllerová, J., Brůna, J., Dvořák, P., Bartaloš, T. & Vítková, M. (2016) Does the data resolution/origin matter? Satellite, airborne and UAV imagery to tackle plant invasions. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences vol. XLI-B7, pp. 903–908.
  • 19. Nishar, A., Richards, S., Breen, D., Robertson, J. & Breen, B. (2016) Thermal infrared imaging of geothermal environments by UAV. Journal of Unmanned Vehicle Systems 4, pp. 136–145, NRC Research Press.
  • 20. Pajares, G. (2015) Overview and current status of remote sensing applications based on unmanned aerial vehicles (UAVs). Photogrammetric Engineering & Remote Sensing 81, pp. 281–329.
  • 21. Pelyushenko, S.A. (1995) Microwave radiometer system for the detection of oil slicks. Spill Science & Technology Bulletin 2(4), pp. 249–254.
  • 22. WPC (2022) Weather Symbols. [Online]. Available from: https://www.wpc.ncep.noaa.gov/dailywxmap/plottedwx. html [Accessed: March 30, 2022].
  • 23. Yao, H., Qin, R. & Chen, X. (2019) Unmanned aerial vehicle for remote sensing applications – A review. Remote Sensing 11, 2019, 1443, Multidisciplinary Digital Publishing Institute.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu „Społeczna odpowiedzialność nauki” - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ca5e6ee2-dcaf-40b6-a5e8-e1b1d642a253
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.