PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A new prediction model of surface subsidence with cauchy distribution in the coal mine of thick topsoil condition

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Coal is the main energy source in China, but its underground mining causes surface subsidence, chich seriously damages the ecological and living environments. How to calculate subsidence accurately is a core issue in evaluating mining damage. At present, the most commonly used method of calculation is the Probability Integral Method (PIM), based on a normal distribution. However, this method has limitations in thick topsoil (thickness > 100 m), in that the extent of the calculated boundary of the subsidence basin is smaller than its real extent, and this has an undoubted impact on the accurate assessment of the extent of mining damage. Therefore, this paper introduces a calculation model for surface subsidence based on a Cauchy distribution for thick topsoil conditions. This not only improves the accuracy of calculation at the subsidence basin boundary, but also provides a universal method for the calculation of surface subsidence.
Rocznik
Strony
147--158
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wykr.
Twórcy
autor
  • China University of Mining and Technology, School of Environment Science and Spatial Informatics, China
autor
  • Strata Mechanics Research Institute, Polish Academy of Sciences, Poland
  • Strata Mechanics Research Institute, Polish Academy of Sciences, Poland
autor
  • Strata Mechanics Research Institute, Polish Academy of Sciences, Poland
autor
  • Shandong University of Science and Technology, College of Geomatics, China
Bibliografia
  • [1] Chen J., Chen Y., Guo, W., Zou Y., 2013. Study on Surface Movement Law Under the Condition of Thick Unconsolidated Strata, Coal Sci. Technol. 11 (41), 95-97. doi.org/10.13199/j.cnki.cst.2013.11.012.
  • [2] Fang K., Xu J., 2016. Statisstical Distribution, Higher Education Press, Beijing.
  • [3] Goldreich A.H., 1913. Die Theorie der Bodensenkungen in Kohlengebieten mit besonderer Berücksichtigung der Eisenbahnsenkungen des Ostrau-Karwiner Steinkohlenrevieres, Springer Berlin Heidelberg, Berlin, Heidelberg. doi.org/10.1007/978-3-642-91615-1.
  • [4] Gruszczyński W., Niedojadło Z., Mrocheń D., 2018. Influence of model parameter uncerainties on forecasted subsidence. Acta Geodyn. Geomater. 15, 3 (191), 211-228. DOI: 10.13168/AGG.2018.0016.
  • [5] Gu P., Wang R., Xu X., 2017. Study on Statistical Analysis Method of Cauchy Distribution. Statistics & Decision 20, 19-22. doi.org/10.13546/j.cnki.tjyjc.2017.20.004.
  • [6] Guo W., Liu D., Bai E., 2016. Modification of subsidence prediction formula based on probability integral method. J. Henan Polytech. Univ. Natural Sci. 35, 357-362.
  • [7] Hegemann M., 2018. Scientific Importance of the Academic Achievements of Professor Knothe for Ground Movement Calculation in Germany. Transactions of The Strata Mechanics Research Institute 20 (1), 33-44.
  • [8] Jiang Y., Yang L., Jiang Y., 2018. The Application and Development of Knothe Influence Function in China. Transactions of The Strata Mechanics Research Institute 20 (2), 137-144.
  • [9] Jing W., Zhao Y., Kong J., Huang C., Jilani K.M.K., Li H., 2018. The time-space prediction model of surface settlement for above underground gas storage cavern in salt rock based on Gaussian function. J. Nat. Gas Sci. Eng. 53, 45-54. https://doi.org/10.1016/j.jngse.2018.02.024.
  • [10] Knothe S., 1957. Observations of surface movements under influence of mining and their theoretical interpretation. Proceedings of the European Congress on Ground Movement held at the University of Leeds. April 9-12. 1957. 210-221.
  • [11] Knothe S., 2005. Asymmetric Function of Distribution of Mining Exploitation Influences in the Medium with Changing Properties. Arch. Min. Sci. 50 (4), 401-415.
  • [12] Li H., Guo G., Zha J., Yuan Y., Zhao B., 2016. Research on the surface movement rules and prediction method of underground coal gasification. Bull. Eng. Geol. Environ. 75 (3), 1133-1142. doi: 10.1007/s10064-015-0809-7.
  • [13] Li P., Tan Z., Yan L., 2018. A shaft pillar mining subsidence calculation using both probability integral method and numerical simulation. C. – Comput. Model. Eng. Sci. 117 (2), 231-250. doi.org/10.31614/cmes.2018.02573.
  • [14] Liu B., Liao, G., 1965. Basic Law of Surface Movement in Coal Mines. China Industrial Press.
  • [15] Liu B., Zhang J., 1995. Stochastic Medium Method for Surface Settlement Caused by Near-surface Excavation. Chinese J. Rock Mech. Eng. 14, 289-296.
  • [16] Liu B.C., Dai H.Y., 2016. Research Development and Origin of Probability Integral Method. Coal Min. Technol. 21, 2-4.
  • [17] Liu B., Yang W., Zhang G., Gao L., 2018. A prediction model based on stochastic medium theory for ground surface settlement induced by non-uniform tunnel deformation. Chinese J. Rock Mech. Eng. 8, 23-35. doi.or g/10.13722/j.cnki.jrme.2017.1531.
  • [18] Litwiniszyn J., 1954. Displacements of a Rock Mass in the Light of the the Theory of Probability. Arch Górn i Hut. 2, 447-463.
  • [19] Litwiniszyn J., 1974. Stochastic Methods in Mechanics of Granular Bodies. Springer, Wien 5-9. doi.org/10.1007/978-3-7091-2836-7_1.
  • [20] Misa R., Tajduś K., Sroka A., 2018. Impact of geotechnical barrier modelled in the vicinity of a building structures located in mining area. Arch. Min. Sci. 63 (4), 919-933. doi.org/10.24425/ams.2018.124984.
  • [21] Paullo Muñoz L.F., Roehl D., 2017. An analytical solution for displacements due to reservoir compaction under arbitrary pressure changes. Appl. Math. Model. 52, 145-159. doi.org/10.1016/j.apm.2017.06.023.
  • [22] Peng S.S., 2015. Topical areas of research needs in ground control – A state of the art review on coal mine ground control. Int. J. Min. Sci. Technol. 25 (1), 1-6. doi.org/10.1016/j.ijmst.2014.12.006.
  • [23] Polanin P., Kowalski A., Walentek A., 2019. Numerical simulation of subsidence caused by roadway system. Arch. Min. Sci. 64, 385-397. doi.org/10.24425/ams.2019.128690.
  • [24] Preusse A., Müller D., Beckers D., 2018. Challenges in German subsidence research – retrospectives and perspectives. Transactions of The Strata Mechanics Research Institute. 20 (1), 25-32.
  • [25] Ren Y., 2018. Study on the polynomial modified model of the probability integral method. Mine Surv. 46, 65-79.
  • [26] Sroka A., 2005. Contribution to the prediction of ground movement after terminating the mine drainage. VGE Publishing Happiness GmbH, Essen.
  • [27] Sroka A., Misa R., Tajduś K., 2018. Calculation of convergence induced rock mass and ground surface movements in salt caverns for storage of liquid and gaseous energy carriers. Geomech. Geodyn. Rock Masses – Sel. Pap. from 2018 Eur. Rock Mech. Symp. EUROCK 2018.
  • [28] Sroka A., Misa R., Tajduś K., 2018. Determination of the horizontal deformation factor for mineral and fluidized deposits exploitation. Acta Geodyn. Geomater. 15, 1 (189), 23-26. DOI: 10.13168/AGG.2017.0030.
  • [29] Sroka A., Tajduś K., 2009. Calculation of development area of oil and gas reservoir. Drilling, Oil, Gas 26, 327-335.
  • [30] Sui W., Di Q., 1999. Research Progress on Interaction between Deformation and Pore Water Pressure of Mining Subsidence Soil. J. Eng. Geol. 4, 303-309.
  • [31] Tajduś K., 2009. New method for determining the elastic parameters of rock mass layers in the region of underground mining influence. Int. J. Rock Mech. Min. Sci. 46, (8) 1296-1305. doi.org/10.1016/j.ijrmms.2009.04.006.
  • [32] Tajduś K., Sroka A., Misa R., 2018. Analysis of the surface horizontal displacement changes due to longwall panel advance. Int. J. Rock Mech. Min. Sci. 104, 119-125. http://dx.doi.org/10.1016/j.ijrmms.2018.02.005.
  • [33] Tiwary R.K., 2001. Environmental impact of coal mining on water regime and its management. Water. Air. Soil Pollut. 132, 185-199. doi.org/10.1023/A:1012083519667.
  • [34] Wang E., Chen P., Liu Z., Liu Y., Li Z., Li X., 2019. Fine detection technology of gas outburst area based on direct current method in Zhuxianzhuang Coal Mine. China, Saf. Sci. 115, 12-18. doi.org/10.1016/j.ssci.2019.01.018.
  • [35] Wang N., Wu K. Qin Z., 2012. Prediction Model of Mining Subsidence with Probability Integration Method Based on Thickness Influences of Loose Layer. Coal Sci. Technol. 40, 10-12.
  • [36] Wang Z., Deng K., 2012. Study on Surface Movement Law under Thick Topsoil Mining Conditions. J. Xi’an Univ. Sci. Technol. 32, 495-499. doi.org/10.13800/j.cnki.xakjdxxb.2012.04.022.
  • [37] Whittaker B.N., Reddish D.J., 1989. Subsidence:Occurrence, prediction,and control. Elsevier, Amsterdam.
  • [38] Xin F., Xu H., Tang D., Yang J., Chen Y., Cao L., Qu H., 2019. Pore structure evolution of low-rank coal in China. Int. J. Coal Geol. 205, 126-139. doi.org/10.1016/j.coal.2019.02.013.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ca5cb1fb-b094-4a56-ba4a-652d466ee508
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.