PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Removal of low molecular organic acids from aqueous solutions with reactive extraction

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents investigation on removal of low molecular organic acids (acetic, lactic, succinic and fumaric) from aqueous solutions with reactive extraction. The results specifically show that the extraction efficiency of acids depends on the type of extractant, diluents of the organic phase and the initial pH of the aqueous phase. It is possible to separate succinic or fumaric from lactic and acetic acids with high selectivity with the use of TOA and Aliquat 336, respectively. Increasing the pH of the aqueous phase results in a reduction of fumaric acid extraction efficiency with solvating extractants. This can be explained by the decreasing share of acidic form, whose extraction is favored by these extractants. Efficient extraction of both fumaric acid and fumarate using Aliquat 336 can be explained by the ionic structure of the quaternary ammonium salt, capable of transporting both forms of the acid.
Rocznik
Strony
5--9
Opis fizyczny
Bibliogr. 19 poz., rys., wykr.
Twórcy
autor
  • Poznan University of Technology, Institute of Chemical Technology and Engineering, pl. M. Skłodowskiej-Curie 2, 60-965 Poznan, Poland
  • Poznan University of Technology, Institute of Chemical Technology and Engineering, pl. M. Skłodowskiej-Curie 2, 60-965 Poznan, Poland
  • Poznan University of Technology, Institute of Chemical Technology and Engineering, pl. M. Skłodowskiej-Curie 2, 60-965 Poznan, Poland
Bibliografia
  • 1. Vlysidis, A., Binns, M., Webb, C. & Theodoropoulos, C. (2011). Glicerol utylisation for the production of chemicals: Conversion to succinic acid, a combined experimental and computational study. Biochem. Eng. J. 58 (59), 1-11, DOI: 10.1016/j. bej.2011.07.004.
  • 2. Melcer, A., Klugmann-Radziemska, E., Ciunel, K. (2011). Zagospodarowanie fazy glicerynowej z produkcji biopaliw. Arch. Gospod. Odp. i Ochr. Śr. 13, 1-20, ISNN 1733-4381.
  • 3. Kośmider, A. & Czaczyk, K. (2009). Perspektywy wykorzystania glicerolu w procesach biotechnologicznych. Post. Microbiol. 48, 277-287, ISSN 0079-4252.
  • 4. Kumar, S. & Babu, B.V. (2008). Process intensifi cation for separation of carboxylic acids from fermentation broths using reactive extraction. J. Fut. Eng. Technol. 3, 19-26.
  • 5. Kumar, S. & Babu, B.V. (2008). Separation of carboxylic acids from waste water via reactive extraction. in international proceedings of convention on water resources development and management (ICWRDM), 23-26 October 2008 (p 1-9). BITS Pilani, India.
  • 6. Hartl, J. & Marr, R. (1993). Extraction processes for bioproduct separation. Sep. Sci. Technol. 28, 805-819, DOI: 10.1080/01496399308019522.
  • 7. Wiśniewski, M. & Pierzchalska, M. (2006). Ekstrakcyjne usuwanie kwasów karboksylowych z odpadowych roztworów wodnych. Przem. Chem. 85, 8-9, ISSN 0033-2496.
  • 8. Kertes, A.S. & King, J. (2009). Extraction chemistry of fermentation product carboxylic acids. Biotechnol. Bioeng. 103, 432-444, DOI: 10.1002/bit.22375.
  • 9. Cascaval, D., Postaru, M., Galaction, A.I., Kloetzer, L. & Blaga, A.C. (2013). Fractionation of carboxylic acids mixture obtained by P. acidiprpionici fermentation using pertraction with tri-n-octylamine and 1-octanol. Ind. Eng. Chem. Res. 52, 2685-2692, DOI: 10.1021/ie302339z.
  • 10. Galaction, A.I., Carlescu, A., Turnea, M. & Cascaval, D. (2012). Direct extraction of propionic acid from Propionibacteriumadidipropionici broths with tri-n-octylamine. Chem. Eng. Technol. 35 (9), 1657-1663, DOI: 10.1002/ceat.201200066.
  • 11. Kyuchoukov, G., Morales, A.F., Albet, J., Malmary, G. & Moinier, J. (2008). On the possibility of predicting the extraction of dicarboxylic acids with tributylphosphate dissolved in a diluent. J. Chem. Eng. Data 53, 639-647, DOI: 10.1021/je700356y.
  • 12. Zhang, L., Yu, F., Chang, Z., Gua, Y. & Li, D. (2012). Extraction equilibria of picolinic acid with trialkylamine/n-octanol. J. Chem. Eng. Data 57, 577-581, DOI: 10.1021/je201314m.
  • 13. Datta, D. & Kumar, S. (2013). Reactive extraction of pyridine carboxylic acids with N, N-dioctyloctan-1-amine: experimental and theoretical studies. Sep. Sci. Technol. 48 (6), 898-908, DOI: 10.1080/01496395.2012.712591.
  • 14. Tamada, J.A. & King, C.J. (1990). Extraction of carboxylic acids with amine extractants. 1. Equilibria and law of mass action modeling. Ind. Eng. Chem. Res. 29, 1319-1326, DOI: 10.1021/ie00103a035.
  • 15. Hano, T., Matsumoto, M., Ohtake, T., Sasaki, K., Hori, F. & Kawano, Y. (1990). Extraction equilibria of organic acids with tri-n-octylphosphineoxide. J. Chem. Eng. Jpn 23 (6), 734-738, DOI: 10.1252/jcej.23.734.
  • 16. Hansch, C., Leo, A. & Hoekman, D. (1995). Exploring QSAR - Hydrophobic, Electronic, and Steric Constants. Washington, DC: American Chemical Society, ISBN: 0841229872; 0841229880; 0841229937.
  • 17. Bizek, V., Horacek, J., Rericha, R. & Kousova, M. (1992). Amine extraction of hydroxycarboxylic acids. 1. Extraction of citric acid with 1-octanol/n-heptane solutions of trialkylamine. Ind. Eng. Chem. Res. 31, 1554-1562, DOI: 10.1021/ie00006a019.
  • 18. Tamada, J.A. & King, C.J. (1990). Extraction of carboxylic acids with amine extractants. 2. Chemical interactions and interpretation of data. Ind. Eng. Chem. Res. 29, 1327-1333, DOI: 10.1021/ie00103a036. http://www.merckmi2llipore.com [03.2013].
  • 19. Almeida, J.R.M., Fávaro, L.C.L. & Quirino, B.F. (2012). Biodiesel biorefi nery: opportunities and challenges for microbial production of fuels and chemicals from glycerol waste. Biot. Biof. 5, 48-64. DOI: 10.1186/1754-6834-5-48.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ca5900e8-2ff8-4249-ab4f-68b8f428ad8c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.