PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nonparametric methods of statistical inference for double-censored data with applications

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article introduces new nonparametric statistical methods for prediction in case of data containing right-censored observations and left-censored observations simultaneously. The methods can be considered as new versions of Hill’s A(n) assumption for double-censored data. Two bounds are derived to predict the survival function for one future observation Xn+1 based based on each version, and these bounds are compared through two examples. Two interesting features are provided based on the proposed methods. The first one is the detailed graphical presentation of the effects of right and left censoring. The second feature is that the lower and upper survival functions can be derived.
Wydawca
Rocznik
Strony
art. no. 20230126
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
  • Department of Mathematics, College of Science, Qassim University, P.O. Box 6644, Buraydah 51452, Saudi Arabia
Bibliografia
  • [1] B. M. Hill, Posterior distribution of percentiles: Bayes’ theorem for sampling from a population, J. Amer. Stat. Assoc. 63 (1968), 677–691.
  • [2] B. M. Hill, De finetti’s theorem, induction, and A n( ) or bayesian nonparametric predictive inference (with discussion), Bayesian Stat. 3 (1988), 211–241; J. M. Bernardo, M. H. DeGroot, D. V. Lindley, and A. F. M. Smith, (Eds), Oxford University Press.
  • [3] L. Mark Berliner and B. M. Hill, Bayesian nonparametric survival analysis, J. Amer. Stat. Assoc. 83 (1988), 772–779.
  • [4] F. P. A. Coolen and K. J. Yan, Nonparametric predictive inference with right-censored data, J. Stat. Planning Inference 126 (2004), 25–54.
  • [5] B. De Finetti, Theory of Probability, vol. 2, Wiley, London.
  • [6] P. Walley, Statistical Reasoning with Imprecise Probabilities, Chapman and Hall, London, 1991.
  • [7] K. Weichselberger, Elementare grundbegriffe einer allgemeineren wahrscheinlichkeitsrechnung i: Intervallwahrscheinlichkeit als umfassendes konzept, Physica-Verlag, Heidelberg, 2001.
  • [8] T. Augustin and F. P. A. Coolen, Nonparametric predictive inference and interval probability, J. Stat. Planning Inference 124 (2004), 251–272.
  • [9] F. P. A. Coolen, Low structure imprecise predictive inference for bayes’ problem, Stat. Probability Lett. 36 (1998), 349–357.
  • [10] F. P. A. Coolen and P. Coolen-Schrijner, Condition monitoring: a new perspective, J. Operat. Res. Soc. 51 (2000), no. 3, 311–319.
  • [11] F. P. A. Coolen, P. Coolen-Schrijner, and K. J. Yan, Nonparametric predictive inference in reliability, Reliabil. Eng. Syst. Safety 78 (2002), no. 2, 185–193.
  • [12] F. P. A. Coolen and P. Van der Laan, Imprecise predictive selection based on low structure assumptions, J. Stat. Planning Inference 98 (2001), no. 1–2, 259–277.
  • [13] A. P. Dempster, On direct probabilities, J. R. Stat. Soc. Ser. B (Methodological) 25 (1963), no. 1, 100–110.
  • [14] D. A. Lane and W. D. Sudderth, Coherent predictive inference, Sankhyā Indian J. Stat. Ser A 46 (1984), 166–185.
  • [15] A. A. H. Ahmadini and F. P. A. Coolen, On the use of an imprecise statistical method for accelerated life testing data using the power-law link function, in: 2018 3rd International Conference on System Reliability and Safety (ICSRS), IEEE, 2018, pp. 244–249.
  • [16] N. A. Ashleik, Learning for Contingency Tables and Survival Data Using Imprecise Probabilities, Ph.D. thesis, University of Saskatchewan, 2018.
  • [17] F. Coolen, A. A. H. Ahmadini, and T. Coolen-Maturi, Imprecise inference based on the log-rank test for accelerated life testing, Metrika 84 (2021), no. 6, 913–925.
  • [18] H. Siddiqa, S. Ali, and I. Shah, Most recent changepoint detection in censored panel data, Comput. Stat. 36 (2021), no. 1, 515–540.
  • [19] K. Fah Tee, K. Pesinis, and T. Coolen-Maturi, Competing risks survival analysis of ruptured gas pipelines: A nonparametric predictive approach, Int. J. Pressure Vessels Piping 175 (2019), 103919.
  • [20] O. Julià and G. Gómez, Simultaneous marginal survival estimators when doubly censored data is present, Lifetime Data Anal. 17 (2011), no. 3, 347–372.
  • [21] E. L. Kaplan and P. Meier, Nonparametric estimation from incomplete observations, J. Amer. Stat. Assoc. 53 (1958), 457–481.
  • [22] W. Q. Meeker and L. A. Escobar, Statistical Methods for Reliability Data, Wiley, New York, 1998.
  • [23] F. P. A. Coolen and K. Jian Yan, Nonparametric predictive comparison of two groups of lifetime data, ISIPTA 3 (2003), 148–161.
  • [24] T. Coolen-Maturi, P. Coolen-Schrijner, and F. P. A. Coolen, Nonparametric predictive multiple comparisons of lifetime data, Commun. Stat.-Theory Methods. 41 (2012), no. 22, 4164–4181.
  • [25] T. A. Maturi, Nonparametric Predictive Inference for Multiple Comparisons, Ph.D. thesis, Durham University, UK, 2010, https://npi-statistics.com/pdfs/theses/TM10.pdf.
  • [26] T. Coolen-Maturi, F. P. A. Coolen, and N. Muhammad, Predictive inference for bivariate data: Combining nonparametric predictive inference for marginals with an estimated copula, J. Stat. Theory Practice 10 (2016), 515–538.
  • [27] N. Muhammad, Predictive Inference with Copulas for Bivariate Data, Ph.D. thesis, Durham University, UK, 2016, https://npi-statistics.com/pdfs/theses/NM16.pdf.
  • [28] N. Muhammad, F. P. A. Coolen, and T. Coolen-Maturi, Predictive inference for bivariate data with nonparametric copula, in: The American Institute of Physics (aip) Conference Proceedings, vol. 1750, 2016, pp. 0600041–0600048, DOI: https://aip.scitation.org/doi/abs/10.1063/1.4954609.
  • [29] S.-F. Wu, Bayesian interval estimation for the two-parameter exponential distribution based on the right type ii censored sample, Symmetry 14 (2022), no. 2, 352.
  • [30] S. BinHimd, Nonparametric Predictive Methods for Bootstrap and Test Reproducibility, Ph.D. thesis, Durham University, UK, 2014, https://npi-statistics.com/pdfs/theses/SB14.pdf.
  • [31] S. BinHimd and F. P. A. Coolen, On boostrapping using nonparametric predictive inference, in: The 1st ISM International Statistical Conference (ISM 2012), Malaysia, 2012, pp. 465–468.
  • [32] F. P. A. Coolen and S. BinHimd, Nonparametric predictive inference bootstrap with application to reproducibility of the two-sample Kolmogorov-Smirnov test, J. Stat. Theory Practice 14 (2020), 1–13.
  • [33] A. S. M. Al Luhayb, Smoothed bootstrap methods for right-censored data and bivariate data, Ph.D. thesis, Durham University, 2021.
  • [34] A. S. M. Al Luhayb, F. P. A. Coolen, and T. Coolen-Maturi, Generalizing banks smoothed bootstrap method for right-censored data, in: 29th European Safety and Reliability Conference (ESREL 2019), Hannover, Germany, 2019, pp. 894–901.
  • [35] A. S. M. Al Luhayb, F. P. A. Coolen, and T. Coolen-Maturi, Smoothed bootstrap for survival function inference, in: Proceedings of the International Conference on Information and Digital Technologies (IDT 2019), Zilina, Slovakia, 2019, pp. 297–304.
  • [36] A. S. M. Al Luhayb, F. P. A. Coolen, and T. Coolen-Maturi, Smoothed bootstrap for right-censored data, Commun. Stat.-Theory Methods 52 (2023), 1–25.
  • [37] A. S. M. Al Luhayb, T. Coolen-Maturi, and F. P. A. Coolen, Smoothed bootstrap methods for bivariate data, J. Stat. Theory Practice 17 (2023), no. 3, 37.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ca54f982-0239-4700-adb6-0937b82c5431
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.