PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Flexural performance of engineered cementitious compositelayered reinforced concrete beams

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Zaprojektowana fleksyjna wydajność belki żelbetowej pokrytej kompozytem cementowym
Języki publikacji
EN
Abstrakty
EN
This study focuses to develop a new hybrid Engineered Cementitious Composite (ECC) and assesses the performance of a new hybrid ECC based on the steel short random fiber reinforcement. This hybrid ECC aims to improve the tensile strength of cementitious material and enhance better flexural performance in an RC beam. In this study, four different mixes have been investigated. ECC with Poly Vinyl Alcohol (PVA) fiber and PolyPropylene (PP) fiber of 2.0% volume fraction are the two Mono fiber mixes; ECC mix with PVA fiber of 0.65% volume fraction hybridized with steel fiber of 1.35% volume fraction, PP fiber of 0.65% volume fraction hybridized with steel of 1.35% volume fraction are the two additional different hybrid mixes. The material properties of mono fiber ECC with 2.0 % of PVA is kept as the reference mix in this study. The hybridization with fibers has a notable achievement on the uniaxial tensile strength, compressive strength, Young’s modulus, and flexural behavior in ECC layered RC beams. From the results, it has been observed that the mix with PVA fiber of 0.65% volume fraction hybrid with steel fiber of 1.35% volume fraction exhibitimprovements in tensile strength, flexural strength, andenergy absorption. ThePP fiber of 0.65% volume fraction hybridized with steel of 1.35% volume fraction mix has reasonable flexural performance and notable achievement in displacement ductility overthe reference mix.
PL
Zaprojektowany kompozyt cementowy (ECC) jest materiałem przygotowywanym na bazie zaprawy cementowej z wykorzystaniem krótkiego włókna, z udziałem objętościowym do 2,0%. Należy do rodziny Kompozytu Cementowego o Bardzo Wysokiej Wytrzymałości (UHTCC), który wykazuje wyjątkowe właściwości mechaniczne w zakresie umocnienia odkształceniowego, wytrzymałości na rozciąganie i odporności na odkształcenia. Typ, geometria, udział objętościowy i inne właściwości wytrzymałościowe włókien stosowanych w mieszance decydują o mechanicznych zachowaniach ECC. Mieszanki ECC są zwykle opracowywane z wykorzystaniem włókna polialkoholu winylowego (PVA), włókna stalowego (SE), włókna polipropylenowego (PP) i włókna polietylenowego (PE). Celem zastosowania włókien jest poprawa umocnienia odkształceniowego, wytrzymałości na rozciąganie i pochłaniania energii betonu, co zmniejsza uszkodzenia w konstrukcji betonowej poddanej wpływom dynamicznym i uderzeniowym. W celu zbadania zachowania ECC podczas testu ściskania, wykonano test modułu Younga, bezpośrednią próbę rozciągania oraz test zginania na belkach dla 4 różnych mieszanek. Mieszanka 1 (M1) zawiera 2% włókna PVA, mieszanka 2 (M2) zawiera 2% włókna PP, mieszanka 3 (M3) zawiera 0,65% PVA i 1,35% włókien stalowych, mieszanka 4 (M4) zawiera 0,65% PP i 1,35% włókien stalowych.
Rocznik
Strony
173--189
Opis fizyczny
Bibliogr. 23 poz., il., tab.
Twórcy
  • Department of Civil Engineering, Kongu Engineering College, Perundurai, Tamilnadu, India
  • Department of Civil Engineering, Government College of Technology, Coimbatore, Tamilnadu, India
Bibliografia
  • 1. V. C. Li, “Engineered cementitious composites (ECC) material, structural, and durability performance”, In: Nawy E, editor. Concrete construction engineering handbook, 1-26, 2007.
  • 2. V. C. Li, H. J. Kong, S. G. Kike “Fiber reinforced high performance concrete material” Ann Arbor, MI: University of Michigan, 2000.
  • 3. K. Rokugo, M. Kunieda, S. Miyazato, “Structural applications of hpfrcc in japan Measuring, Monitoring and Modeling Concrete Properties”, 17–23, 2006.
  • 4. M. Maalej, K. S. Leong, “Engineered cementitious composites for effective FRP-strengthening of RC beams”, Composites Science and Technology, 65: 1120–1128, 2005.
  • 5. M. Maalej, V. C. Li, “Introduction of strain hardening engineeredcementitious composites in design of reinforced concrete flexuralmembers for improved durability”, American Concrete Institute Structural Journal, 92(2): 167– 76, 1995.
  • 6. C. Victor Li, S. Wang, C. Wu, “Tensile strain-hardening behaviour of polyvinyl alcohol engineered cementitious composite”, American Concrete Institute Material Journal, Vol.98: 483-92, 2001.
  • 7. R. N. Swamy, “Fibre reinforced cement and concrete”, 4th RILEM international Symposium. Sheffield: Chapman and Hall, 1992.
  • 8. A. R. Krishnaraja, S. Kandasamy, “Mechanical Properties of Engineered Cementitious Composites”, International Journal of ChemTech Research, Vol.10. No.8: 314-347, 2017.
  • 9. P. Vignesh, A.R. Krishnaraja, N. Nandhini, “Study on mechanical properties of geo polymer concrete using msand and glass fibers”, International Journal of Innovative Research in Science, Engineering and Technology,
  • 10. Buruae of Indian Standards, IS 10262, “Guide line for Concrete Mix Proportioning”, 2009. Vol.3. No.2: 110- 116, 2014.
  • 11. B. Felekoglu, K. Tosun, B. Baradan, “Effects of fibre type and matrix structure on the mechanical performance of self-compacting micro-concrete composites” Cement Concrete Research, Vol. 39, No. 11:1023-1032, 2009.
  • 12. Buruae of Indian Standards, IS 4031 – part 6, “Methods of physical tests for hydraulic cement”, 1988.
  • 13. Bang Jin Wook, G. Ganesh Prabhu, Yong II Jang, Yun Yong Kim, “Development of Ecoefficient Engineered Cementitious Composites Using Supplementary Cementitious Materials as a Binder and Bottom Ash Aggregate as Fine aggregate”, Hindawi Publishing Corporation International Journal of Polymer Science, Article ID 681051, 1-12, 2015.
  • 14. Zuanfeng Pan, Chang Wu, Jianzhong Liu, Wei Wang, Jiwei Liu, “Study on mechanical properties of costeffective polyvinyl alcoholengineered cementitious composites (PVA-ECC)”, Construction and Building Materials,78: 397–404, 2015.
  • 15. M. Sivaraja, S. Kandasamy, “Characterization of Concrete Composites for Energy Absorption”, Journal Of Reinforced Plastics and Composites, Vol. 27, No. 2/2008, 2008.
  • 16. Hamid Reza Pakravan., MasoudJamshidi. MasoudLatifi, “Study on fiber hybridization effect of engineered cementitious composites with low- and high-modulus polymeric fibers”, Construction and Building Materials, Vol. 112, pp. 739–746, 2016.
  • 17. Khin T. Soe, Y. X. Zhang, L. C. Zhang, “Material properties of a new hybrid fibre-reinforced engineered cementitious composite”, Construction and Building Materials, Vol. 43: 399-407, 2013.
  • 18. V. C. Li, C. Wu, S. Wang, A. Ogawa, T. Saito, “Interface tailoring for strain-hardening PVA–ECC”, American Concrete Institute Material Journal, vol.99, no.5: 463–472, 2002.
  • 19. T. M. Wang, “Control of cracking in engineeringstructure: principle of "resist and release" for alternativebay construction method cracking control of super longmass concrete”, China Architecture & Building Press, Beijing, 2007.
  • 20. N. Q. Feng, Q. X. Gu, T. Y. Hao, “Cracking in concretestructure and its counter measures”, China Machine Press, Beijing, 2006.
  • 21. S. L. Xu, N. Wang, X. F. Zhang, “Flexural behavior of plain concrete beams strengthenedwith ultra high toughness cementitious composites layer”, Materials and Structures, 45: 851–859, 2012.
  • 22. Qinghua Li, Shilang Xu, “Experimental Research on Mechanical Performance of Hybrid Fiber Reinforced Cementitious Composites with PolyvinylAlcohol Short Fiber and Carbon Textile”, Journal of composite materials, Vol. 45, No. 1/2011, 2011.
  • 23. S. K. Park, D. S. Yang, “Flexural behavior of reinforced concrete beams with cementitious repair materials”, Materials and Structures, 38: 329-334, 2005.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ca4c846e-2028-4afe-ab00-ad9a6bf9ca13
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.