PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Plants take action to mitigate salt stress : Ask microbe for help, phytohormones, and genetic approaches

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Global agriculture is a pivotal activity performed by various communities worldwide to produce essential human food needs. Plant productivity is limited by several factors, such as salinity, water scarcity, and heat stress. Salinity significantly causes short or long-term impacts on the plant photosynthesis mechanisms by reducing the photosynthetic rate of CO2 assimilation and limiting the stomatal conductance. Moreover, disturbing the plant water status imbalance causes plant growth inhibition. Up-regulation of several plant phytohormones occurs in response to increasing soil salt concentration. In addition, there are different physiological and biochemical mechanisms of salt tolerance, including ion transport, uptake, homeostasis, synthesis of antioxidant enzymes, and osmoprotectants. Besides that, microorganisms proved their ability to increase plant tolerance, Bacillus spp. represents the dominant bacteria of the rhizosphere zone, characterised as harmless microbes with extraordinary abilities to synthesise many chemical compounds to support plants in confronting salinity stress. In addition, applying arbuscular mycorrhizal fungi (AMF) is a promising method to decrease salinity-induced plant damage as it could enhance the growth rate relative to water content. In addition, there is a demand to search for new salt-tolerant crops with more yield and adaptation to unfavourable environmental conditions. The negative impact of salinity on plant growth and productivity, photosynthesis, stomatal conductance, and changes in plant phytohormones biosynthesis, including abscisic acid and salicylic acid, jasmonic acid, ethylene, cytokinins, gibberellins, and brassinosteroids was discussed in this review. The mechanisms evolved to adapt and/or survive the plants, including ion homeostasis, antioxidants, and osmoprotectants biosynthesis, and the microbial mitigate salt stress. In addition, there are modern approaches to apply innovative methods to modify plants to tolerate salinity, especially in the essential crops producing probable yield with a notable result for further optimisation and investigations.
Wydawca
Rocznik
Tom
Strony
1--16
Opis fizyczny
Bibliogr. 192 poz., rys., tab.
Twórcy
  • University of Guelph, Department of Plant Agriculture, Guelph, Canada
  • Menoufia University, Faculty of Agriculture, Department of Genetics, Shibin El-Kom, Egypt
  • Assiut University, Faculty of Science, Botany and Microbiology Department, Assiut, Egypt
  • Arish University, Faculty of Science, Botany and Microbiology Department, El-Arish, Egypt
autor
  • Cairo University, Department of Laser Applications in Meteorology, Photochemistry, and Agriculture, National Institute of Laser Enhanced Sciences, Giza, Egypt
  • Tanta University, Faculty of Science, Microbiology Department, Tanta, Egypt
  • Menoufia University, Faculty of Agriculture, Department of Genetics, Shibin El-Kom, Egypt
  • Al-Azhar University, The Regional Centre for Mycology and Biotechnology, Cairo, Egypt
autor
  • National Engineering School of Sfax (ENIS), Biology Engineering Department, Sfax, Tunisia
  • Al-Azhar University, Agriculture Faculty, Department of Agriculture Botany, Cairo, Egypt
  • Tanta University, Faculty of Agriculture, Agricultural Botany Department, Al-Geish St, Tanta, 6632110, Egypt
Bibliografia
  • ABBRUZZESE G., BERITOGNOLO I., MULEO R., PIAZZAI M., SABATTI M., MUGNOZZA G. S., KUZMINSKY E. 2009. Leaf morphological plasticity and stomatal conductance in three Populus alba L. genotypes subjected to salt stress. Environmental and Experimental Botany. Vol. 66(3) p. 381–388. DOI 10.1016/j.envexpbot.2009.04.008.
  • AHMAD R., LIM C. J., KWON S.-Y. 2013. Glycine betaine: A versatile compound with great potential for gene pyramiding to improve crop plant performance against environmental stresses. Plant Biotechnology Reports. Vol. 7(1) p. 49–57. DOI 10.1007/s11816-012-0266-8.
  • ALI B., WANG X., SALEEM M.H., SUMAIRA, HAFEEZ A., AFRIDI M.S., ..., ALI S. 2022. PGPR-mediated salt tolerance in maize by modulating plant physiology, antioxidant defense, compatible solutes accumulation and bio-surfactant producing genes. Plants. Vol. 11(3), 345. DOI 10.3390/plants11030345.
  • ANSARI F.A., AHMAD I., PICHTEL J. 2019. Growth stimulation and alleviation of salinity stress to wheat by the biofilm forming Bacillus pumilus strain FAB10. Applied Soil Ecology. Vol. 143 p. 45–54. DOI 10.1016/j.apsoil.2019.05.023.
  • APEL K., HIRT H. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology. Vol. 55 p. 373–399. DOI 10.1146/annurev.arplant.55.031903.141701.
  • ARIF Y., SINGH P., SIDDIQUI H., BAJGUZ A., HAYAT S. 2020. Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiology and Biochemistry. Vol. 156 p. 64–77.
  • ARORA N.K., TEWARI S., SINGH S., LAL N., MAHESHWARI D.K. 2012. PGPR for protection of plant health under saline conditions. In: Bacteria in agrobiology: Stress management. Ed. D.K. Maheshwari. Berlin. Springer p. 239–258.
  • ASHRAF M., FOOLAD M.R. 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany. Vol. 59(2) p. 206–216. DOI 10.1016/j.envexpbot.2005.12.006.
  • BAJGUZ A., HAYAT S. 2009. Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiology and Biochemistry. Vol. 47(1) p. 1–8. DOI 10.1016/j.plaphy.2008.10.002.
  • BEN AHMED C., BEN ROUINA B., SENSOY S., BOUKHRISS M., BEN ABDULLAH F. 2010. Exogenous proline effects on photosynthetic performance and antioxidant defense system of young olive tree. Journal of Agricultural and Food Chemistry. Vol. 58(7) p. 4216–4222. DOI 10.1021/jf9041479.
  • BENSIDHOUM L., NABTI E.-H. 2019. Plant growth-promoting bacteria for improving crops under saline conditions. In: Microorganisms in saline environments: Strategies and functions. Eds. B. Giri, A. Varma. Cham. Springer p. 329–352.
  • BIRHANE E., STERCK F.J., FETENE M., BONGERS F., KUYPER T.W. 2012. Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency, and growth of frankincense seedlings under pulsed water availability conditions. Oecologia. Vol. 169(4) p. 895–904. DOI 10.1007/s00442-012-2258-3.
  • BORDE M., DUDHANE M., JITE P.K. 2010. AM fungi influences the photosynthetic activity, growth and antioxidant enzymes in Allium sativum L. under salinity condition. Notulae Scientia Biologicae. Vol. 2(4) p. 64–71. DOI 10.15835/nsb245434.
  • BOWLES T.M., BARRIOS-MASIAS F.H., C ARLISLE E.A., C AVAGNARO T.R., JACKSON L.E. 2016. Effects of arbuscular mycorrhizae on tomato yield, nutrient uptake, water relations, and soil carbon dynamics under deficit irrigation in field conditions. Science of The Total Environment. Vol. 566–567 p. 1223–1234. DOI 10.1016/j.scitotenv.2016.05.178.
  • BOYER J.S. 1982. Plant productivity and environment. Science. Vol. 218 (4571) p. 443–448. DOI 10.1126/science.218.4571.443.
  • CECCARELLI S., GRANDO S., MAATOUGUI M., MICHAEL M., SLASH M., HAGHPARAST R., ..., NACHIT M. 2010. Plant breeding and climate changes. The Journal of Agricultural Science. Vol. 148(6) p. 627–637. DOI 10.1017/S0021859610000651.
  • ÇEKIÇ F.Ö., ÜNYAYAR S., ORTAŞ İ. 2012. Effects of arbuscular mycorrhizal inoculation on biochemical parameters in Capsicum annuum grown under long term salt stress. Turkish Journal of Botany. Vol. 36(1) p. 63–72. DOI 10.3906/Bot-1008-32.
  • CHAUHAN P.S., L ATA C., TIWARI S., CHAUHAN A.S., MISHRA S.K., AGRAWAL L., CHAKRABARTY D., NAUTIYAL C.S. 2019. Transcriptional alterations reveal Bacillus amyloliquefaciens-rice cooperation under salt stress. Scientific Reports. Vol. 9(1), 11912 p. 1–13. DOI 10.1038/s41598-019-48309-8.
  • CHELE K.H., TINTE M.M., PIATER L.A., DUBERY I.A., TUGIZIMANA F. 2021. Soil salinity, a serious environmental issue and plant responses: A metabolomics perspective. Metabolites. Vol. 11(11), 724. DOI 10.3390/metabo11110724.
  • CHEN S., LI J., WANG S., HÜTTERMANN A., ALTMAN A. 2001. Salt, nutrient uptake and transport, and ABA of Populus euphratica; A hybryd in response to increasing soil NaCl. Trees. Vol. 15(3) p. 186–194. DOI 10.1007/s004680100091.
  • CHEN T., SHABALA S., NIU Y., CHEN Z.-H., SHABALA L., MEINKE H., VENKATARAMAN G., PAREEK A., XU J., ZHOU M. 2021. Molecular mechanisms of salinity tolerance in rice. The Crop Journal. Vol. 9(3) p. 506–520. DOI 10.1016/j.cj.2021.03.005.
  • CHEN T.H.H., MURATA N. 2008. Glycinebetaine: an effective protectant against abiotic stress in plants. Trends in Plant Science. Vol. 13(9) p. 499–505. DOI 10.1016/j.tplants.2008.06.007.
  • CHEN Z., CUIN T.A., ZHOU M., TWOMEY A., NAIDU B.P., SHABALA S. 2007. Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance. Journal of Experimental Botany. Vol. 58(15–16) p. 4245–4255. DOI 10.1093/jxb/erm284.
  • CHEN Z., POTTOSIN I.I., CUIN T.A., FUGLSANG A.T., TESTER M., JHA D., ..., SHABALA S. 2007. Root plasma membrane transporters controlling K+/Na+ homeostasis in salt-stressed barley. Plant Physiology. Vol. 145(4) p. 1714–1725. DOI 10.1104/pp.107.110262.
  • CHOUDHARY S., WANI K.I., NAEEM M., KHAN M.M.A., AFTAB T. 2022. Cellular responses, osmotic adjustments, and role of osmolytes in providing salt stress resilience in higher plants: Polyamines and nitric oxide crosstalk. Journal of Plant Growth Regulation. DOI 10.1007/s00344-022-10584-7.
  • CONFORTI P. (ed.) 2011. Looking ahead in world food and agriculture: perspectives to 2050. ROME. FAO. ISBN 978-92-5-106903-5 pp. 539.
  • CUI B., LIU R., FLOWERS T.J., SONG J. 2021. Casparian bands and suberin lamellae: Key targets for breeding salt tolerant crops? Environmental and Experimental Botany. Vol. 191, 104600. DOI 10.1016/j.envexpbot.2021.104600.
  • DEINLEIN U., STEPHAN A.B., HORIE T., LUO W., XU G., SCHROEDER J.I. 2014. Plant salt-tolerance mechanisms. Trends in Plant Science. Vol. 19(6) p. 371–379. DOI 10.1016/j.tplants.2014.02.001.
  • DELGADO C., MORA-POBLETE F., AHMAR S., CHEN J.-T., FIGUEROA C.R. 2021. Jasmonates and plant salt stress: Molecular players, physiological effects, and improving tolerance by using genome-associated tools. International Journal of Molecular Sciences. Vol. 22(6), 3082. DOI 10.3390/ijms22063082.
  • DIETZ K.J., TAVAKOLI N., KLUGE C., MIMURA T., SHARMA S.S., HARRIS G.C., CHARDONNENS A.N., GOLLDACK D. 2001. Significance of the V-type ATPase for the adaptation to stressful growth conditions and its regulation on the molecular and biochemical level. Journal of Experimental Botany. Vol. 52(363) p. 1969–1980. DOI 10.1093/jexbot/52.363.1969.
  • EGAMBERDIEVA D., JABBOROVA D., HASHEM A. 2015. Pseudomonas induces salinity tolerance in cotton (Gossypium hirsutum) and resistance to Fusarium root rot through the modulation of indole-3-acetic acid. Saudi Journal of Biological Sciences. Vol. 22(6) p. 773–779. DOI 10.1016/j.sjbs.2015.04.019.
  • ELHAMAHMY A.M., ELSADANY O., EID M., ABDELAZEEM S., GERISH S., KALAJI M.H., WRÓBEL J., ELSHEERY N. 2021. Impact of gamma irradiation pretreatment on biochemical and molecular responses of potato growing under salt stress. Chemical and Biological Technologies in Agriculture. Vol. 8(1), 35. DOI 10.1186/s40538-021-00233-8.
  • ELSHEERY N.I., CAO K.-F. 2008. Gas exchange, chlorophyll fluorescence, and osmotic adjustment in two mango cultivars under drought stress. Acta Physiologiae Plantarum. Vol. 30(6) p. 769–777. DOI 10.1016/j.sjbs.2015.04.019.
  • ELSHEERY N.I., HELALY M.N., EL-HOSEINY H.M., ALAM-ELDEIN S.M. 2020a. Zinc oxide and silicone nanoparticles to improve the resistance mechanism and annual productivity of salt-stressed mango trees. Agronomy. Vol. 10(4), 558. DOI 10.3390/agronomy10040558.
  • ELSHEERY N.I., HELALY M.N., OMAR S.A., JOHN S.V., ZABOCHNICKA-SWIĄTEK M., KALAJI H. M., RASTOGI A. 2020b. Physiological and molecular mechanisms of salinity tolerance in grafted cucumber. South African Journal of Botany. Vol. 130 p. 90–102. DOI 10.1016/j.sajb.2019.12.014.
  • ELSHEERY N.I., SUNOJ V., WEN Y., ZHU J., MURALIDHARAN G., CAO K. 2020. Foliar application of nanoparticles mitigates the chilling effect on photosynthesis and photoprotection in sugarcane. Plant Physiology and Biochemistry. Vol. 149 p. 50–60. DOI 10.1016/j.plaphy.2020.01.035.
  • ELSHEERY N.I., WILSKE B., KUN-FANG C. 2008. The effect of night chilling on gas exchange and chlorophyll fluorescence of two mango cultivars growing under two irradiances. Plant Diversity. Vol. 30(04), 447. DOI 10.3724/SP.J.1143.2008.07260.
  • ELSHEERY N.I., WILSKE B., ZHANG J.-L., CAO K.-F. 2007. Seasonal variations in gas exchange and chlorophyll fluorescence in the leaves of five mango cultivars in southern Yunnan, China. The Journal of Horticultural Science and Biotechnology. Vol. 82(6) p. 855–862. DOI 10.3724SP.J.1143.2008.07260.
  • ERICE G., RUÍZ-LOZANO J.M., ZAMARREÑO Á.M., GARCÍA-MINA J.M., AROCA R. 2017. Transcriptomic analysis reveals the importance of JA-Ile turnover in the response of Arabidopsis plants to plant growth promoting rhizobacteria and salinity. Environmental and Experimental Botany. Vol. 143 p. 10–19. DOI 10.1016/j.envexpbot.2017.08.006.
  • ETESAMI H., ADL S.M. 2020. Can interaction between silicon and non-rhizobial bacteria help in improving nodulation and nitrogen fixation in salinity–stressed legumes? A review. Rhizosphere. Vol. 15, 100229. DOI 10.1016/j.rhisph.2020.100229.
  • ETESAMI H., NOORI F. 2019. Soil salinity as a challenge for sustainable agriculture and bacterial-mediated alleviation of salinity stress in crop plants. In: Saline soil-based agriculture by halotolerant microorganisms. Eds. M. Kumar, H. Etesami, V. Kumar. Singapore. Springer p. 1–22. DOI 10.1007/978-981-13-8335-9_1.
  • FAO 2015. FAO statistical pocketbook 2015. World food and agriculture. Rome, Italy. Food and Agriculture Organization. ISBN 978-92-5-108802-9 pp. 231.
  • FLOWERS T. 2004. Improving crop salt tolerance. Journal of Experimental Botany. Vol. 55(396) p. 307–319. DOI 10.1093/jxb/erh003.
  • FRITZ V., TEREUCÁN G., SANTANDER C., CONTRERAS B., CORNEJO P., FERREIRA P.A.A., RUIZ A. 2022. Effect of inoculation with arbuscular mycorrhizal fungi and fungicide application on the secondary metabolism of Solanum tuberosum leaves. Plants. Vol. 11(3), 278. DOI 10.3390/plants11030278.
  • FU Z.Q., YAN S., SALEH A., WANG W., RUBLE J., OKA N., ..., DONG X. 2012. NPR3 and NPR4 are receptors for the immune Signac salicylic acid in plants. Nature. Vol. 486 p. 228–232. DOI 10.1038/nature11162.
  • GHORBANI JAVID M., SOROOSHZADEH A., MODARRES SANAVY S.A.M., ALLAHDADI I., MORADI F. 2011. Effects of the exogenous application of auxin and cytokinin on carbohydrate accumulation in grains of rice under salt stress. Plant Growth Regulation. Vol. 65(2) p. 305–313. DOI 10.1007/s10725-011-9602-1.
  • GILL S.S., TUTEJA N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry. Vol. 48(12) p. 909–930. DOI 10.1016/j.plaphy.2010.08.016.
  • GROEN S.C., WHITEMAN N.K. 2014. The evolution of ethylene signaling in plant chemical ecology. Journal of Chemical Ecology. Vol. 40(7) p. 700–716. DOI 10.1007/s10886-014-0474-5.
  • GUJJAR R. S., ROYTRAKUL S., CHUEKONG W., SUPAIBULWATANA K. 2021. A synthetic cytokinin influences the accumulation of leaf soluble sugars and sugar transporters, and enhances the drought adaptability in rice. 3 Biotech. Vol. 11(8), 369. DOI 10.1007/s13205-021-02908-3.
  • GUPTA K.J., STOIMENOVA M., KAISER W.M. 2005. In higher plants, only root mitochondria, but not leaf mitochondria reduce nitrite to NO, in vitro and in situ. Journal of Experimental Botany. Vol. 56(420) p. 2601–2609. DOI 10.1093/jxb/eri252.
  • GUPTA N., KANOJIA A., KATIYAR A., MUDGIL Y. 2021. Molecular characterization of NDL1-AGB1 mediated salt stress signaling: Further exploration of the role of NDL1 interacting partners. Cells. Vol. 10(9), 2261. DOI 10.3390/cells10092261.
  • GUPTA P., DIWAN B. 2017. Bacterial Exopolysaccharide mediated heavy metal removal: A review on biosynthesis, mechanism and remediation strategies. Biotechnology Reports. Vol. 13 p. 58–71. DOI 10.1016/j.btre.2016.12.006.
  • HAROON U., KHIZAR M., LIAQUAT F., ALI M., AKBAR M., TAHIR K., BATOOL S.S., KAMAL A., CHAUDHARY H.J., MUNIS M.F.H. 2021. Halotolerant plant growth-promoting rhizobacteria induce salinity tolerance in wheat by enhancing the expression of SOS genes. Journal of Plant Growth Regulation. Vol. 41(1) p. 2435–2448. DOI 10.1007/s00344-021-10457-5.
  • HASANUZZAMAN M., NAHAR K., FUJITA M. (2013). Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. In: Ecophysiology and responses of plants under salt stress. Eds. P. Ahmad, M.M. Azooz, M.N.V. Prasad. New York NY. Springer p. 25–87.
  • HASEGAWA P.M., BRESSAN R.A., ZHU J.-K., BOHNERT H.J. 2000. Plant cellular and molecular responses to high salinity. Annual Review of Plant Biology. Vol. 51(1) p. 463-499. DOI 10.1146/annurev.arplant.51.1.463.
  • HASHEM A., ALQARAWI A.A., RADHAKRISHNAN R., AL.-ARJANI A.-B.F., ALDEHAISH H.A., EGAMBERDIEVA D., ABD_ALLAH E.F. 2018. Arbuscular mycorrhizal fungi regulate the oxidative system, hormones and ionic equilibrium to trigger salt stress tolerance in Cucumis sativus L. Saudi Journal of Biological Sciences. Vol. 25(6) p. 1102–1114. DOI 10.1016/j.sjbs.2018.03.009.
  • HASHEM A., ALTERAMI S.A., ALQARAWI A.A., ABD_ALLAH E.F., EGAMBER-DIEVA D. 2016. Arbuscular mycorrhizal fungi enhance Basil tolerance to salt stress through improved physiological and nutritional status. Pakistan Journal of Botany. Vol. 48(1) p. 37–45.
  • HELALY M.N., EL-HOSEINY H., EL-SHEERY N.I., RASTOGI A., KALAJI H.M. 2017. Regulation and physiological role of silicon in alleviating drought stress of mango. Plant Physiology and Biochemistry. Vol. 118 p. 31–44. DOI 10.1016/j.plaphy.2017.05.021.
  • HERNÁNDEZ J.A., ALMANSA M.S. 2002. Short-term effects of salt stress on antioxidant systems and leaf water relations of pea leaves. Physiologia Plantarum. Vol. 115(2) p. 251–257. DOI 10.1034/j.1399-3054.2002.1150211.x.
  • HOSSAIN M.T., ISLAM T. 2022. Amelioration of salinity stress by Bacillus species as promoters of plant growth in saline soil. In: Bacilli in agrobiotechnology: Plant stress tolerance, bioremediation, and bioprospecting. Eds. M.T. Islam, M. Rahman, P. Pandey. Cham. Springer p. 199–208. DOI 10.1007/978-3-030-85465-2_9.
  • HUSSAIN S., HUSSAIN S., ALI B., REN X., CHEN X., LI Q., SAQIB M., AHMAD N. 2021. Recent progress in understanding salinity tolerance in plants: Story of Na+ /K+ balance and beyond. Plant Physiology and Biochemistry. Vol. 160 p. 239–256. DOI 10.1016/j.plaphy.2021.01.029.
  • ILANGUMARAN G., SMITH D.L. 2017. Plant growth promoting rhizobacteria in amelioration of salinity stress: A systems biology perspective. Frontiers in Plant Science. Vol. 8, 1768. DOI 10.3389/fpls.2017.01768.
  • JAMES R.A., BLAKE C., BYRT C.S., MUNNS R. 2011. Major genes for Na + exclusion, Nax1 and Nax2 (wheat HKT1;4 and HKT1;5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions. Journal of Experimental Botany. Vol. 62 (8) p. 2939–2947. DOI 10.1093/jxb/err003.
  • JERBI M., LABIDI S., LARUELLE F., TISSERANT B., DALPÉ Y., LOUNÈS-HADJ SAHRAOUI A., BEN JEDDI F. 2022. Contribution of native and exotic arbuscular mycorrhizal fungi in improving the physiological and biochemical response of hulless barley (Hordeum vulgare ssp. nudum L.) to drought. Journal of Soil Science and Plant Nutrition. Vol. 22 p. 2187–2204. DOI 10.1007/s42729-022-00802-2.
  • JHA Y., SUBRAMANIAN R.B. 2014. PGPR regulate caspase-like activity, programmed cell death, and antioxidant enzyme activity in paddy under salinity. Physiology and Molecular Biology of Plants. Vol. 20(2) p. 201–207. DOI 10.1007/s12298-014-0224-8.
  • JHA Y., SUBRAMANIAN R.B., PATEL S. 2011. Combination of endophytic and rhizospheric plant growth promoting rhizobacteria in Oryza sativa shows higher accumulation of osmoprotectant against saline stress. Acta Physiologiae Plantarum. Vol. 33(3) p. 797-802. DOI 10.1007/s12298-014-0224-8.
  • JIA W., WANG Y., ZHANG S., ZHANG J. 2002. Salt-stress-induced ABA accumulation is more sensitively triggered in roots than in shoots. Journal of Experimental Botany. Vol. 53(378) p. 2201–2206. DOI 10.1093/jxb/erf079.
  • JOVANOVIĆ Ž., RADOVIĆ S. 2021. Plant growth-promoting bacteria as an alternative strategy for the amelioration of salt-stress effects in plants. In: Future of sustainable agriculture in saline environments. Eds. K. Negacz, P. Vellinga, E. Barrett-Lennard, R. Choukr-Allah, T. Elzenga. Boca Raton. CRC Press p. 483–496.
  • KALAJI H.M., BOSA K., KOŚCIELNIAK J., ŻUK-GOŁASZEWSKA K. 2011. Effects of salt stress on photosystem II efficiency and CO 2 assimilation of two Syrian barley landraces. Environmental and Experimental Botany. Vol. 73 p 64–72. DOI 10.1016/j.envexpbot.2010.10.009.
  • KARLIDAG H., YILDIRIM E., TURAN M. 2011. Role of 24-epibrassinolide in mitigating the adverse effects of salt stress on stoma tal conductance, membrane permeability, and leaf water content, ionic composition in salt stressed strawberry (Fragaria × ananassa). Scientia Horticulturae. Vol. 130(1) p. 133–140. DOI 10.1016/j.scienta.2011.06.025.
  • KASIM W.A., GAAFAR R.M., ABOU-ALI R.M., OMAR M.N., HEWAIT H.M. 2016. Effect of biofilm forming plant growth promoting rhizobacteria on salinity tolerance in barley. Annals of Agricultural Sciences. Vol. 61(2) p. 217–227. DOI 10.1016/j.aoas.2016.07.003.
  • KAZAN K. 2013. Auxin and the integration of environmental signals into plant root development. Annals of Botany. Vol. 112(9) p. 1655–1665. DOI 10.1093/aob/mct229.
  • KHAMIS G., WINKELMANN T., SCHAARSCHMIDT F., PAPENBROCK J. 2016. Establishment of an in vitro propagation and transformation system of Balanites aegyptiaca. Plant Cell, Tissue and Organ Culture (PCTOC). Vol. 125(3) p. 457–470. DOI 10.1007/s11240-016-0961-1.
  • KHAN A., SIRAJUDDIN , ZHAO X.Q., JAVED M. T., KHAN K.S., BANO A., SHEN R.F., MASOOD S. 2016. Bacillus pumilus enhances tolerance in rice (Oryza sativa L.) to combined stresses of NaCl and high boron due to limited uptake of Na+ . Environmental and Experimental Botany. Vol. 124 p. 120–129. DOI 10.1016/j.envexpbot.2015.12.011.
  • KHAN M.A., HAMAYUN M., ASAF S., KHAN M., YUN B.-W., KANG S.-M., LEE I.-J. 2021. Rhizospheric Bacillus spp. rescues plant growth under salinity stress via regulating gene expression, endogenous hormones, and antioxidant system of Oryza sativa L. Frontiers in Plant Science. Vol. 12, 665590. DOI 10.3389/fpls.2021.665590.
  • KHAVARI-NEJAD R., CHAPARZADEH N. 1998. The effects of NaCl and CaCl2 on photosynthesis and growth of alfalfa plants. Photosynthetica. Vol. 35(3) p. 461–466. DOI 10.1023/A:1006928721986.
  • KIBRIA M.G., HOSSAIN M., MURATA Y., HOQUE M.A. 2017. Antioxidant defense mechanisms of salinity tolerance in rice genotypes. Rice Science. Vol. 24(3) p. 155–162. DOI 10.1016/j.rsci.2017.05.001.
  • KROMDIJK J., LONG S.P. 2016. One crop breeding cycle from starvation? How engineering crop photosynthesis for rising CO 2 and temperature could be one important route to alleviation. Proceedings of the Royal Society B: Biological Sciences. Vol. 283 (1826), 20152578. DOI 10.1098/rspb.2015.2578.
  • KUMAR A., SINGH S., MUKHERJEE A., RASTOGI R.P., VERMA J.P. 2021. Salt-tolerant plant growth-promoting Bacillus pumilus strain JPVS11 to enhance plant growth attributes of rice and improve soil health under salinity stress. Microbiological Research. Vol. 242, 126616. DOI 10.1016/j.micres.2020.126616.
  • KUMAR G., BASU S., SINGLA-PAREEK S.L., PAREEK A. 2022. Unraveling the contribution of OsSOS2 in conferring salinity and drought tolerance in a high-yielding rice. Physiologia Plantarum. Vol. 174 (1), e13638. DOI 10.1111/ppl.13638.
  • KUMARI S., VAISHNAV A., JAIN S., VARMA A., CHOUDHARY D.K. 2015. Bacterial-mediated induction of systemic tolerance to salinity with expression of stress alleviating enzymes in soybean (Glycine max L. Merrill). Journal of Plant Growth Regulation. Vol. 34(3) p. 558–573. DOI 10.1007/s00344-015-9490-0.
  • LANDI S., HAUSMAN J.-F., GUERRIERO G., ESPOSITO S. 2017. Poaceae vs. abiotic stress: Focus on drought and salt stress, recent insights and perspectives. Frontiers in Plant Science. Vol. 8, 1214. DOI 10.3389/fpls.2017.01214.
  • LARKINDALE J., HALL J.D., KNIGHT M.R., VIERLING E. 2005. Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiology. Vol. 138(2) p. 882–897. DOI 10.1104/pp.105.062257.
  • LI S., AN Y., HAILATI S., ZHANG J., CAO Y., LIU Y., GENG J., HU T., YANG P. 2019. Overexpression of the cytokinin oxidase/dehydrogenase (CKX) from Medicago sativa enhanced salt stress tolerance of Arabidopsis. Journal of Plant Biology. Vol. 62(5) p. 374–386. DOI 10.1007/s12374-019-0141-z.
  • LI Y., YUAN L., XUE S., LIU B., JIN G. 2021. Artificial root exudates excite bacterial nitrogen fixation in the subsurface of mine soils. Applied Soil Ecology. Vol. 157, 103774. DOI 10.1016/j.apsoil.2020.103774.
  • LIU J., ISHITANI M., HALFTER U., KIM C.-S., ZHU J.-K. 2000. The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proceedings of the National Academy of Sciences. Vol. 97(7) p. 3730-3734. DOI 10.1073/pnas.97.7.3730.
  • LIU J., ZHU J.-K. 1998. A calcium sensor homolog required for plant salt tolerance. Science. Vol. 280(5371) p. 1943–1945. DOI 10.1126/science.280.5371.1943.
  • LIU S., HAO H., LU X., ZHAO X., WANG Y., ZHANG Y., XIE Z., WANG R. 2017. Transcriptome profiling of genes involved in induced systemic salt tolerance conferred by Bacillus amyloliquefaciens FZB42 in Arabidopsis thaliana. Scientific reports. Vol. 7(1), 10795. DOI 10.1038/s41598-017-11308-8.
  • LORETO F., CENTRITTO M., CHARTZOULAKIS K. 2003. Photosynthetic limitations in olive cultivars with different sensitivity to salt stress. Plant, Cell & Environment. Vol. 26(4) p. 595–601. DOI 10.1046/j.1365-3040.2003.00994.x.
  • LYNCH J.P., MOONEY S.J., STROCK C.F., SCHNEIDER H.M. 2022. Future roots for future soils. Plant, Cell & Environment. Vol. 45(3) p. 620–636. DOI 10.1111/pce.14213.
  • MA J., WANG W., YANG J., QIN S., YANG Y., SUN C., PEI G., ZEESHAN M., LIAO H., LIU L., HUANG J. 2022. Mycorrhizal symbiosis promotes the nutrient content accumulation and affects the root exudates in maize. BMC Plant Biology. Vol. 22(1), 64. DOI 10.1186/s12870-021-03370-2.
  • MAKSYMIEC W., WÓJCIK M., KRUPA Z. 2007. Variation in oxidative stress and photochemical activity in Arabidopsis thaliana leaves subjected to cadmium and excess copper in the presence or absence of jasmonate and ascorbate. Chemosphere. Vol. 66(3) p. 421–427. DOI 10.1016/j.chemosphere.2006.06.025.
  • MALIK J.A., AL QARAWI A.A., DAR B.A., HASHEM A., ALSHAHRANI T.S., AL ZAIN M.N., HABIB M.M., JAVED M.M., ABD_ALLAH E.F. 2022. Arbuscular mycorrhizal fungi isolated from highly saline “Sabkha habitat” soil alleviated the NaCl-induced stress and improved Lasiurus scindicus Henr. Growth. Agriculture. Vol. 12(3), 337. DOI 10.3390/agriculture12030337.
  • MANTRI N., PATADE V., PENNA S., FORD R., PANG E. 2012. Abiotic stress responses in plants: Present and future. In: Abiotic stress responses in plants: Metabolism, productivity and sustainability. Eds. P. Ahmad, M.N.V. Prasad. New York. Springer p. 1–19.
  • MARTINEZ C.A., MAESTRI M., LANI E.G. 1996. In vitro salt tolerance and proline accumulation in Andean potato (Solanum spp.) differing in frost resistance. Plant Science. Vol. 116(2) p. 177–184. DOI 10.1016/0168-9452(96)04374-9.
  • MARTINEZ-ATIENZA J., JIANG X., GARCIADEBLAS B., MENDOZA I., ZHU J.-K., PARDO J.M., QUINTERO F.J. 2006. Conservation of the salt overly sensitive pathway in rice. Plant Physiology. Vol. 143(2) p. 1001–1012. DOI 10.1104/pp.106.092635.
  • MARTÍNEZ-VIVEROS O., JORQUERA M., CROWLEY D., GAJARDO G., MORA M. 2010. Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. Journal of Soil Science and Plant Nutrition. Vol. 10(3) p. 293–319. DOI 10.4067/S0718-95162010000100006.
  • MARULANDA A., AZCÓN R., CHAUMONT F., RUIZ-LOZANO J.M., AROCA R. 2010. Regulation of plasma membrane aquaporins by inoculation with a Bacillus megaterium strain in maize (Zea mays L.) plants under unstressed and salt-stressed conditions. Planta. Vol. 232(2) p. 533–543. DOI 10.1007/s00425-010-1196-8.
  • MBARKI S., SYTAR O., CERDA A., ZIVCAK M., RASTOGI A., HE X., ZOGHLAMI A., ABDELLY C., BRESTIC M. 2018. Strategies to mitigate the salt stress effects on photosynthetic apparatus and productivity of crop plants. Salinity responses and tolerance in plants. Vol. 1. Targeting sensory, transport and signaling mechanisms. Eds. V. Kumar, S.H. Wani, P. Suprasanna, L.-S.P. Tran. Cham. Springer p. 85–136.
  • MÉNDEZ-GÓMEZ M., BARRERA-ORTIZ S., CASTRO-MERCADO E., LÓPEZ-BUCIO J., GARCÍA-PINEDA E. 2021. The nature of the interaction Azospirillum-Arabidopsis determine the molecular and morphological changes in root and plant growth promotion. Protoplasma. Vol. 258(1) p. 179–189. DOI 10.1007/s00709-020-01552-7.
  • MISHRA P., MISHRA J., ARORA N.K. 2021. Plant growth promoting bacteria for combating salinity stress in plants – Recent developments and prospects: A review. Microbiological Research. Vol. 252, 126861. DOI 10.1016/j.micres.2021.126861.
  • MIURA K., TADA Y. 2014. Regulation of water, salinity, and cold stress responses by salicylic acid. Frontiers in Plant Science. Vol. 5, 4. DOI 10.3389/fpls.2014.00004.
  • MOHAN D., GUPTA R. K. 2015. Relevance of physiological efficiency in wheat grain quality and the prospects of improvement. Physiology and Molecular Biology of Plants. Vol. 21(4) p. 591–596. DOI 10.1007/s12298-015-0329-8.
  • MORADI F., ISMAIL A.M. 2007. Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress Turing seedling and reproductive stages in rice. Annals of Botany. Vol. 99(6) p. 1161–1173. DOI 10.1093/aob/mcm052.
  • MORINAKA Y., SAKAMOTO T., INUKAI Y., AGETSUMA M., KITANO H., ASHIKARI M., MATSUOKA M. 2006. Morphological alteration caused by brassinosteroid insensitivity increases the biomass and grain production of rice. Plant Physiology. Vol. 141(3) p. 924–931. DOI 10.1104/pp.106.077081.
  • MUKHOPADHYAY R., SARKAR B., JAT H.S., SHARMA P.C., BOLAN N.S. 2021. Soil salinity under climate change: Challenges for sustainable agriculture and food security. Journal of Environmental Management. Vol. 280, 111736. DOI 10.1016/j.jenvman.2020.111736.
  • MÜLLER M. 2021. Foes or friends: ABA and ethylene interaction under abiotic stress. Plants. Vol. 10(3), 448. DOI 10.3390/plants10030448.
  • MUNNS R., TESTER M. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology. Vol. 59 p. 651–681. DOI 10.1146/annurev.arplant.59.032607.092911.
  • NASER H.M., HANAN E.-H., ELSHEERY N.I., KALAJI H.M. 2016. Effect of biofertilizers and putrescine amine on the physiological features and productivity of date palm (Phoenix dactylifera, L.) grown on reclaimed-salinized soil. Trees. Vol. 30(4) p. 1149-1161. DOI 10.1007/s00468-016-1353-1.
  • NASRI N., MAATALLAH S., KADDOUR R., LACHÂAL M. 2016. Effect of salinity on Arabidopsis thaliana seed germination and acid phosphatase activity. Archives of Biological Sciences. Vol. 68(1) p. 17–23. DOI 10.2298/ABS150620003N.
  • NAUTIYAL C.S., SRIVASTAVA S., CHAUHAN P.S., SEEM K., MISHRA A., SOPORY S.K. 2013. Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress. Plant Physiology and Biochemistry. Vol. 66 p. 1–9. DOI 10.1016/j.plaphy.2013.01.020.
  • NESHAT M., ABBASI A., HOSSEINZADEH A., SARIKHANI M. R., DADASHI CHAVAN D., RASOULNIA A. 2022. Plant growth promoting bacteria (PGPR) induce antioxidant tolerance against salinity stress through biochemical and physiological mechanisms. Physiology and Molecular Biology of Plants. Vol. 28 p. 347–361. DOI 10.1007/s12298-022-01128-0.
  • NIU S.-Q., LI H.-R., PARÉ P. W., AZIZ M., WANG S.-M., SHI H., LI J., HAN Q.-Q., GUO S.-Q., LI J. 2016. Induced growth promotion and higher salt tolerance in the halophyte grass Puccinellia tenuiflora by beneficial rhizobacteria. Plant and Soil. Vol. 407(1) p. 217–230. DOI 10.1007/s11104-015-2767-z.
  • NIU X., ZHAI N., YANG X., SU M., LIU C., WANG L., QU P., LIU W., YUAN Q., PEI X. 2022. Identification of drought-resistant genes in Shanlan Upland rice. Agriculture. Vol. 12(2), 150. DOI 10.3390/agriculture12020150.
  • NOAMAN M.M., DVORAK J., DONG J. 2002. Genes inducing salt tolerance in wheat, Lophopyrum elongatum and amphiploid and their responses to ABA under salt stress. In: Prospects for saline agriculture. Eds. R. Ahmad, K.A. Malik. Tasks for vegetation science. Vol. 37. Dordrecht. Springer p. 139–144. DOI 10.1007/978-94-017-0067-2_14.
  • NOOR J., ULLAH A., SALEEM M.H., TARIQ A., ULLAH S., WAHEED A., OKLA M.K., AL-HASHIMI A., CHEN Y., AHMED Z., AHMAD I. 2022. Effect of jasmonic acid foliar spray on the morpho-physiological mechanism of salt stress tolerance in two soybean varieties (Glycine max L.). Plants. Vol. 11(5), 651. DOI 10.3390/plants11050651.
  • NUMAN M., BASHIR S., KHAN Y., MUMTAZ R., SHINWARI Z.K., KHAN A.L., KHAN A., AL-HARRASI A. 2018. Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: A review. Microbiological Research. Vol. 209 p. 21–32. DOI 10.1016/j.micres.2018.02.003.
  • OBROUCHEVA N.V. 2021. Germination program in non-dormant seeds: Programming, saving and implementation. Russian Journal of Plant Physiology. Vol. 68(6) p. 1003–1017. DOI 10.1134/S1021443721060145.
  • OH D.-H., LEE S.Y., BRESSAN R.A., YUN D.-J., BOHNERT H.J. 2010. Intracellular consequences of SOS1 deficiency during salt stress. Journal of Experimental Botany. Vol. 61(4) p. 1205–1213. DOI 10.1093/jxb/erp391.
  • OLIVIERA OTOCH M., MENEZES SOBREIRA A.C., FARIAS DE ARAGÃO M.E., ORELLANO E.G., DA GUIA SILVA LIMA M., FERNANDES DE MELO D. 2001. Salt modulation of vacuolar H+-ATPase and H+-Pyrophosphatase activities in Vigna unguiculata. Journal of Plant Physiology. Vol. 158(5) p. 545–551. DOI 10.1078/0176-1617-00310.
  • OROZCO-MOSQUEDA M. D.C., FLORES A., ROJAS-SÁNCHEZ B., URTIS-FLORES C.A., MORALES-CEDEÑO L.R., VALENCIA-MARIN M.F., C HÁVEZ-AVILA S., ROJAS-SOLIS D., SANTOYO G. 2021. Plant growth-promoting bacteria as bioinoculants: Attributes and challenges for sustainable crop improvement. Agronomy. Vol. 11(6), 1167. DOI 10.3390/agronomy11061167.
  • OROZCO-MOSQUEDA M. D .C., GLICK B.R., SANTOYO G. 2020. ACC deaminase in plant growth-promoting bacteria (PGPB): An efficient mechanism to counter salt stress in crops. Microbiological Research. Vol. 235, 126439. DOI 10.1016/j.micres.2020.126439.
  • OVERMYER K., BROSCHÉ M., KANGASJÄRVI J. 2003. Reactive oxygen species and hormonal control of cell death. Trends in Plant Science. Vol. 8(7) p. 335–342. DOI 10.1016/S1360-1385(03)00135-3.
  • PAREEK A., DHANKHER O.P., FOYER C.H. 2020. Mitigating the impact of climate change on plant productivity and ecosystem sustainability. Journal of Experimental Botany. Vol. 71(2) p. 451–456. DOI 10.1093/jxb/erz518.
  • PARIDA A.K., DAS A.B. 2005. Salt tolerance and salinity effects on plants: A review. Ecotoxicology and Environmental Safety. Vol. 60(3) p. 324–349. DOI 10.1016/j.ecoenv.2004.06.010.
  • PARIDA A.K., DAS A.B., MOHANTY P. 2004. Investigations on the antioxidative defence responses to NaCl stress in a mangrove, Bruguiera parviflora: Differential regulations of isoforms of some antioxidative enzymes. Plant Growth Regulation. Vol. 42(3) p. 213–226. DOI 10.1023/B:GROW.0000026508.63288.39.
  • PARIHAR M., CHITARA M.K. RAM , H., KUMARI A., TIWARI G., RANA K., GORAIN B., KUMAR U., BISHT J.K., KANT L. 2022. Role of AM fungi in growth promotion of high-value crops. Chapter 5. In: New and future developments in microbial biotechnology and bioengineering: Sustainable agriculture: Advances in microbe-based biostimulants. Eds. H. B. Singh, A. Vaishnav. Elsevier p. 121–144. DOI 10.1016/B978-0-323-85577-8.00018-4.
  • QIU Z., GUO J., ZHU A., ZHANG L., ZHANG M. 2014. Exogenous jasmonic acid can enhance tolerance of wheat seedlings to salt stress. Ecotoxicology and Environmental Safety. Vol. 104 p. 202–208. DOI 10.1016/j.ecoenv.2014.03.014.
  • RAHMAN M.S., MIYAKE H., TAKEOKA Y. 2002. Effects of exogenous glycinebetaine on growth and ultrastructure of salt-stressed rice seedlings (Oryza sativa L.). Plant Production Science. Vol. 5(1) p. 33–44. DOI 10.1626/pps.5.33.
  • RIVAS-SAN VICENTE M., PLASENCIA J. 2011. Salicylic acid beyond defence: Its role in plant growth and development. Journal of Experimental Botany. Vol. 62(10) p. 3321–3338. DOI 10.1093/jxb/err031.
  • ROLLI E., MARASCO R., VIGANI G., ETTOUMI B., MAPELLI F., DEANGELIS M. L., ..., DAFONCHIO D. 2015. Improved plant resistance to drought is promoted by the root-associated microbiome as a water stressdependent trait. Environmental Microbiology. Vol. 17(2) p. 316–331. DOI 10.1111/1462-2920.12439.
  • ROUPHAEL Y., FRANKEN P., SCHNEIDER C., SCHWARZ D., GIOVANNETTI M., AGNOLUCCI M., PASCALE S.D., BONINI P., COLLA G. 2015. Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Scientia Horticulturae. Vol. 196 p. 91–108. DOI 10.1016/j.scienta.2015.09.002.
  • TAHA R.S., SELEIMAN M.F., ALOTAIBI M., ALHAMMAD B.A., RADY M.M., MAHDI A.H.A. 2020. Exogenous potassium treatments elevate salt tolerance and performances of Glycine max L. by boosting antioxidant defense system under actual saline field conditions. Agronomy. Vol. 10(11), 1741. DOI 10.3390/agronomy10111741.
  • SANDRINI M., NERVA L., SILLO F., BALESTRINI R., CHITARRA W., ZAMPIERI E. 2022. Abiotic stress and belowground microbiome: The potential of omics approaches. International Journal of Molecular Sciences. Vol. 23(3), 1091. DOI 10.3390/ijms23031091.
  • SANTANDER C., SANHUEZA M., OLAVE J., BORIE F., VALENTINE A., CORNEJO P. 2019. Arbuscular mycorrhizal colonization promotes the tolerance to salt stress in lettuce plants through an efficient modification of ionic balance. Journal of Soil Science and Plant Nutrition. Vol. 19(2) p. 321–331. DOI 10.1007/s42729-019-00032-z.
  • SARMA R.K., SAIKIA R. 2014. Alleviation of drought stress in mung bean by strain Pseudomonas aeruginosa GGRJ21. Plant and Soil. Vol. 377(1) p. 111–126. DOI 10.1007/s11104-013-1981-9.
  • SAXENA B., SHUKLA K., GIRI B. 2017. Arbuscular mycorrhizal fungi and tolerance of salt stress in plants. In: Arbuscular mycorrhizas and stress tolerance of plants. Ed. Q.-S. Wu. Singapore. Springer p. 67–97. DOI 10.1007/978-981-10-4115-0_4.
  • SCHACHTMAN D.P., TYERMAN S.D., TERRY B.R. 1991. The K+ /Na+ selectivity of a cation channel in the plasma membrane of root cells does not differ in salt-tolerant and salt-sensitive wheat species. Plant Physiology. Vol. 97(2) p. 598–605. DOI 10.1104/pp.97.2.598.
  • SEEMA K., MEHTA K., SINGH N. 2018. Studies on the effect of plant growth promoting rhizobacteria (PGPR) on growth, physiological parameters, yield and fruit quality of strawberry cv. chandler. Journal of Pharmacognosy and Phytochemistry. Vol. 7(2) p. 383–387.
  • SENTHILKUMAR M., SWARNALAKSHMI K., GOVINDASAMY V., LEE Y.K., ANNAPURNA K. 2009. Biocontrol potential of soybean bacterial endophytes against charcoal rot fungus, Rhizoctonia bataticola. Current Microbiology. Vol. 58(4) s. 288–293. DOI 10.1007/s00284-008-9329-z.
  • SHABALA S., CUIN T.A. 2012. Plant salt tolerance: Methods and protocols. Eds. S. Shabala, T.A. Cuin. Methods in molecular biology. Vol. 913. Springer. ISBN 978-1-61779-986-0 pp. 432.
  • SHAHID S.A., ZAMAN M., HENG L. 2018. Soil salinity: Historical perspectives and a world overview of the problem. In: Guideline for salinity assessment, mitigation and adaptation using nu clear and related techniques. M. Zaman, S.A. Shahid, L. Heng. Cham. Springer p. 43–53. DOI 10.1007/978-3-319-96190-3_2.
  • SHAHZAD B., TANVEER M., CHE Z., REHMAN A., CHEEMA S.A., SHARMA A., SONG H., S REHMAN , ZHAORONG D. 2018. Role of 24-epibrassinolide (EBL) in mediating heavy metal and pesticide induced oxidative stress in plants: A review. Ecotoxicology and Environmental Safety. Vol. 147 p. 935–944. DOI 10.1016/j.ecoenv.2017.09.066.
  • SHARIFI M., GHORBANLI M., EBRAHIMZADEH H. 2007. Improved growth of salinity-stressed soybean after inoculation with salt pre-treated mycorrhizal fungi. Journal of Plant Physiology. Vol. 164(9) p. 1144–1151. DOI 10.1016/j.jplph.2006.06.016.
  • SHARMA A., THAKUR S., KUMAR V., KANWAR M.K., KESAVAN A.K., THUKRAL A.K., BHARDWAJ R., ALAM P., AHMAD P. (2016). Pre-sowing seed treatment with 24-epibrassinolide ameliorates pesticide stress in Brassica juncea L. through the modulation of stress markers. Frontiers in Plant Science. Vol. 7, 1569. DOI 10.3389/fpls.2016.01569.
  • SHELDEN M.C., DIAS D.A., JAYASINGHE N.S., BACIC A., ROESSNER U. 2016. Root spatial metabolite profiling of two genotypes of barley (Hordeum vulgare L.) reveals differences in response to short-term salt stress. Journal of Experimental Botany. Vol. 67(12) p. 3731–3745. DOI 10.1093/jxb/erw059.
  • SHI H., ZHU J.-K. 2002. Regulation of expression of the vacuolar Na+ /H + antiporter gene AtNHX1 by salt stress and abscisic acid. Plant Molecular Biology. Vol. 50(3) p. 543–550. DOI 10.1023/A:1019859319617.
  • SHRIVASTAVA P., KUMAR R. 2015. Soil salinity: A serious environment al issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences. Vol. 22(2) p. 123–131. DOI 10.1016/j.sjbs.2014.12.001.
  • SINGH H., BHAT J.A., SINGH V.P., CORPAS F.J., YADAV S.R. 2021. Auxin metabolic network regulates the plant response to metalloids stress. Journal of Hazardous Materials. Vol. 405, 124250. DOI 10.1016/j.jhazmat.2020.124250.
  • SINGH V.K., SINGH A.K., SINGH P.P., KUMAR A. 2018. Interaction of plant growth promoting bacteria with tomato under abiotic stress: A review. Agriculture, Ecosystems & Environment. Vol. 267 p. 129–140. DOI 10.1016/j.agee.2018.08.020.
  • SONG R.-F., LI T.-T., LIU W.-C. 2021. Jasmonic acid impairs Arabidopsis seedling salt stress tolerance through MYC2-mediated repression of CAT2 expression. Frontiers in Plant Science. Vol. 12, 730228. DOI 10.3389/fpls.2021.730228.
  • STEIN T. 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Molecular Microbiology. Vol. 56(4) p. 845–857. DOI 10.1111/j.1365-2958.2005.04587.x.
  • SUBRAMANIAN S., RICCI E., SOULEIMANOV A., SMITH D.L. 2016. A proteomic approach to lipo-chitooligosaccharide and thuricin 17 effects on soybean germination unstressed and salt stress. PLoS ONE. Vol. 11(8), e0160660. DOI 10.1371/journal.pone.0160660.
  • SUNKAR R., CHINNUSAMY V., ZHU J., ZHU J.-K. 2007. Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends in Plant Science. Vol. 12(7) p. 301–309. DOI 10.1016/j.tplants.2007.05.001.
  • SUREKHA C., KUMARI K.N., ARUNA L.V., SUNEETHA G., ARUNDHATI A., KAVI KISHOR P.B. 2014. Expression of the Vigna aconitifolia P5CSF129A gene in transgenic pigeonpea enhances proline accumulation and salt tolerance. Plant Cell, Tissue and Organ Culture. Vol. 116(1) p. 27–36. DOI 10.1007/s11240-013-0378-z.
  • SZIDERICS A.H., RASCHE F., TROGNITZ F., SESSITSCH A., WILHELM E. 2007. Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annuum L.). Canadian Journal of Microbiology. Vol. 53(11) p. 1195–1202. DOI 10.1139/W07-082.
  • TAJI T., C OHSUMI ., IUCHI S., SEKI M., KASUGA M., KOBAYASHI M., YAMAGUCHI-SHINOZAKI K., SHINOZAKI K. 2002. Important roles of drought-and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. The Plant Journal. Vol. 29(4) p. 417–426. DOI 10.1046/j.0960-7412.2001.01227.x.
  • TALEBI ATOUEI M., POURBABAEE A.A., SHORAFA M. 2019. Alleviation of salinity stress on some growth parameters of wheat by exopolysaccharide-producing bacteria. Iranian Journal of Science and Technology, Transactions A: Science. Vol. 43(5) p. 2725–2733. DOI 10.1007/s40995-019-00753-x.
  • TANVEER M., SHAHZAD B., SHARMA A., KHAN E.A. 2019. 24-Epibrassinolide application in plants: An implication for improving drought stress tolerance in plants. Plant Physiology and Biochemistry. Vol. 135 p. 295–303. DOI 10.1016/j.pla-phy.2018.12.013.
  • TEO H.M., AZIZ A., WAHIZATUL A.A., BHUBALAN K., SITI NORDAHLIAWATE M.S., MUHAMAD S.C.I., LEE CHUEN N. 2022. Setting a plausible route for saline soil-based crop cultivations by application of beneficial halophyte-associated bacteria: A review. Microorganisms. Vol. 10(3), 657. DOI 10.3390/microorganisms10030657.
  • THIRKELL T.J., CHARTERS M.D., ELLIOTT A.J., SAIT S.M., FIELD K.J. 2017. Are mycorrhizal fungi our sustainable saviours? Considerations for achieving food security. Journal of Ecology. Vol. 105(4) p. 921–929. DOI 10.1111/1365-2745.12788.
  • THOMAS J.C., MC ELWAIN E.F., BOHNERT H.J. 1992. Convergent induction of osmotic stress-responses: Abscisic acid, cytokinin, and the effects of NaCl. Plant Physiology. Vol. 100(1) p. 416–423. DOI 10.1104/pp.100.1.416.
  • TISARUM R., SAMPHUMPHUANG T., YOOYOUNGWECH S., SINGH H.P., CHA-UM S. 2022. Arbuscular mycorrhizal fungi modulate physiological and morphological adaptations in para rubber tree (Hevea brasiliensis) under water deficit stress. Biologia. Vol. 77 p. 1723–1736. DOI 10.1007/s11756-022-01016-8.
  • TIWARI B., BOSE A., GHOSH B. 1998. Photosynthesis in rice under a salt stress. Photosynthetica. Vol. 34(2) p. 303–306. DOI 10.1023/A:1006857027398.
  • TONG H., CHU C. 2018. Functional specificities of brassinosteroid and potential utilization for crop improvement. Trends in Plant Science. Vol. 23(11) p. 1016–1028. DOI 10.1016/j.tplants.2018.08.007.
  • TRAN M.T., DOAN D.T.H., KIM J., SONG Y.J., SUNG Y.W., DAS S., KIM E.J., SON G.H., KIM S.H., VAN VU T., KIM J.-Y. 2021. CRISPR/Cas9-based precise excision of SlHyPRP1 domain(s) to obtain salt stress-tolerant tomato. Plant Cell Reports. Vol. 40(6) p. 999–1011. DOI 10.3390/cimb44060182.
  • ULLAH S., BANO A. 2015. Isolation of plant-growth-promoting rhizobacteria from rhizospheric soil of halophytes and their impact on maize (Zea mays L.) under induced soil salinity. Canadian Journal of Microbiology. Vol. 61(4) p. 307–313. DOI 10.1139/cjm-2014-066.
  • UN Habitat, WHO 2021. Progress on wastewater treatment – Global status and acceleration needs for SDG indicator 6.3.1. Geneva. United Nations Human Settlements Programme (UN-Habitat), World Health Organization (WHO). ISBN 978-92-1-132878-3 pp. 98.
  • UPADHYAY S.K., SINGH D.P. 2015. Effect of salt-tolerant plant growth-promoting rhizobacteria on wheat plants and soil health in a saline environment. Plant Biology. Vol. 17(1) p. 288–293. DOI 10.1111/plb.12173.
  • UPADHYAY S.K., SINGH J.S., SAXENA A.K., SINGH D.P. 2012. Impact of PGPR inoculation on growth and antioxidant status of wheat under saline conditions. Plant Biology. Vol. 14(4) p. 605–611. DOI 10.1111/j.1438-8677.2011.00533.x.
  • VARDHARAJULA S., ZULFIKAR ALI S., GROVER M., REDDY G., BANDI V. 2011. Drought-tolerant plant growth promoting Bacillus spp.: Effect on growth, osmolytes, and antioxidant status of maize under drought stress. Journal of Plant Interactions. Vol. 6(1) p. 1–14. DOI 10.1080/17429145.2010.535178.
  • WANG B., LÜTTGE U., RATAJCZAK R. 2001. Effects of salt treatment and osmotic stress on V-ATPase and V-PPase in leaves of the halophyte Suaeda salsa. Journal of Experimental Botany. Vol. 52(365) p. 2355–2365. DOI 10.1093/jexbot/52.365.2355.
  • WANG R., WAN S., SUN J., XIAO H. 2018. Soil salinity, sodicity and cotton yield parameters under different drip irrigation regimes during saline wasteland reclamation. Agricultural Water Management. Vol. 209 p. 20–31. DOI 10.1016/j.agwat.2018.07.004.
  • WANG W., WU Z., HE Y., HUANG Y., LI X., YE B.-C. 2018. Plant growth promotion and alleviation of salinity stress in Capsicum annuum L. by Bacillus isolated from saline soil in Xinjiang. Ecotoxicology and Environmental Safety. Vol. 164 p. 520–529. DOI 10.1016/j.ecoenv.2018.08.070.
  • WANG X., WANG W., HUANG J., PENG S., XIONG D. 2018. Diffusional conductance to CO 2 is the key limitation to photosynthesis in salt-stressed leaves of rice (Oryza sativa). Physiologia Plantarum. Vol. 163(1) p. 45–58. DOI 10.1111/ppl.12653.
  • WANG Y., HUANG L., DU F., WANG J., ZHAO X., LI Z., WANG W., XU J., FU B. 2021. Comparative transcriptome and metabolome profiling reveal molecular mechanisms underlying OsDRAP1-mediated salt tolerance in rice. Scientific Reports. Vol. 11(1), 5166. DOI 10.1038/s41598-021-84638-3.
  • WANG Y., SHEN W., CHAN Z., WU Y. 2015. Endogenous cytokinin overproduction modulates ROS homeostasis and decreases salt stress resistance in Arabidopsis thaliana. Frontiers in Plant Science. Vol. 6, 1004. DOI 10.3389/fpls.2015.01004.
  • WANG Y., WANG M., LI Y., WU A., HUANG J. 2018. Effects of arbuscular mycorrhizal fungi on growth and nitrogen uptake of Chrysanthemum morifolium under salt stress. PLoS ONE. Vol. 13(4), e0196408. DOI 10.1371/journal.pone.0196408.
  • WHITE J.F., KINGSLEY K.L., VERMA S.K., KOWALSKI K.P. 2018. Rhizophagy cycle: An oxidative process in plants for nutrient extraction from symbiotic microbes. Microorganisms. Vol. 6(3), 95. DOI 10.3390/microorganisms6030095.
  • WU H., YANG J., SHEN P., LI Q., WU W., JIANG X., QIN L., HUANG J., CAO X., QI F. 2021. High-level production of indole-3-acetic acid in the metabolically engineered Escherichia coli. Journal of Agricultural and Food Chemistry. Vol. 69(6) p. 1916–1924. DOI 10.1021/acs.jafc.0c08141.
  • WU L., HUO W., YAO D., LI M. 2019. Effects of solid matrix priming (SMP) and salt stress on broccoli and cauliflower seed germination and early seedling growth. Scientia Horticulturae. Vol. 255 p. 161–168. DOI 10.1016/j.scienta.2019.05.007.
  • XUE F., LIU W., CAO H., SONG L., JI S., TONG L., DING R. 2021. Stomatal conductance of tomato leaves is regulated by both abscisic acid and leaf water potential under combined water and salt stress. Physiologia Plantarum. Vol. 172(4) p. 2070–2078. DOI 10.1111/ppl.13441.
  • YAN Z., CHEN J., LI X. 2013. Methyl jasmonate as modulator of Cd toxicity in Capsicum frutescens var. fasciculatum seedlings. Ecotoxicology and Environmental Safety. Vol. 98 p. 203–209. DOI 10.1016/j.ecoenv.2013.08.019.
  • YEO A.R., FLOWERS S.A., RAO G., WELFARE K., SENANAYAKE N., FLOWERS T.J. 1999. Silicon reduces sodium uptake in rice (Oryza sativa L.) in saline conditions and this is accounted for by a reduction in the transpirational bypass flow. Plant, Cell & Environment. Vol. 22(5) p. 559–565. DOI 10.1046/j.1365-3040.1999.00418.x.
  • YIN C.-C., MA B., COLLINGE D.P., POGSON B.J., HE S.-J., XIONG Q., ..., ZHANG J.-S. 2015. Ethylene responses in rice roots and coleoptiles are differentially regulated by a carotenoid isomerase-mediated abscisic acid pathway. The Plant Cell. Vol. 27(4)p. 1061–1081. DOI 10.1105/tpc.15.00080.
  • YOKOI S., QUINTERO F.J., CUBERO B., RUIZ M.T., BRESSAN R.A., HASEGAWA P.M., PARDO J.M. 2002. Differential expression and function of Arabidopsis thaliana NHX Na+ /H + antiporters in the salt stress response. The Plant Journal. Vol. 30(5) p. 529–539. DOI 10.1046/j.1365-313X.2002.01309.x.
  • YOON J.Y., HAMAYUN M., LEE S.-K., LEE I.-J. 2009. Methyl jasmonate alleviated salinity stress in soybean. Journal of Crop Science and Biotechnology. Vol. 12(2) p. 63–68. DOI 10.1007/s12892-009-0060-5.
  • ZAKHAROVA E.A., SHCHERBAKOV A.A., BRUDNIK V.V., SKRIPKO N., BULKHIN N.S., IGNATOV V.V. 1999. Biosynthesis of indole-3-acetic acid in Azospirillum brasilense: Insights from quantum chemistry. European Journal of Biochemistry. Vol. 259(3) p. 572–576. DOI 10.1046/j.1432-1327.1999.00033.x.
  • ZHANG H., ZHU J., GONG Z., ZHU J.-K. 2022. Abiotic stress responses in plants. Nature Reviews Genetics. Vol. 23(2) p. 104–119. DOI 10.1038/s41576-021-00413-0.
  • ZHANG J., XU T., LIU Y., CHEN T., ZHANG Q., WLI ., ZHOU H., ZHANG Y., ZHANG Z. 2022. Molecular insights into salinity responsiveness in contrasting genotypes of rice at the seedling stage. International Journal of Molecular Sciences. Vol. 23(3), 1624. DOI 10.3390/ijms23031624.
  • ZHU J.-K. 2003. Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology. Vol. 6(5) p. 441–445. DOI 10.1016/S1369-5266(03)00085-2.
  • ZHU J.-K. 2016. Abiotic stress signaling and responses in plants. Cell. Vol. 167(2) p. 313–324. DOI 10.1016/j.cell.2016.08.029.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ca4b3149-824c-4f70-9514-439190c4dffc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.