PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

In silico study of the structure and function of Streptococcus mutans plasmidic proteins

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Gram-positive bacterium Streptococcus mutans is the principal causative agent of human tooth decay, an oral disease that affects the majority of the world’s population. Although the complete S. mutans genome is known, approximately 700 proteins are still annotated as hypothetical proteins, as no threedimensional structure or homology with known proteins exists for them. Thus, the significant portion of genomic sequences coding for unknown-function proteins makes the knowledge of pathogenicity and survival mechanisms of S. mutans still incomplete. Plasmids are found in virtually every species of Streptococcus, and some of these mediate resistance to antibiotics and pathogenesis. However, there are strains of S. mutans that contain plasmids, such as LM7 and UA140, to which no function has been assigned yet. In this work, we describe an in silico study of the structure and function of all the S. mutans proteins encoded by pLM7 and pUA140 plasmids to gain insight into their biological function. A combination of different structural bioinformatics methodologies led to the identification of plasmidic proteins potentially required for the bacterial survival and pathogenicity. The structural information obtained on these proteins can be used to select novel targets for the design of innovative therapeutic agents towards S. mutans.
Rocznik
Strony
51--61
Opis fizyczny
Bibliogr. 26 poz., rys.
Twórcy
autor
  • Department of Sciences, University of Roma Tre, 00146 Rome, Italy
autor
  • Department of Sciences, University of Roma Tre, 00146 Rome, Italy; and Department of Biology, University of Padua, 35131 Padua, Italy
autor
  • Department of Sciences, University of Roma Tre, 00146 Rome, Italy
  • Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy, Phone: +39-06-57336362, Fax: +39-06-57336321
  • National Institute of Nuclear Physics, Roma Tre Section, 00146 Rome, Italy
Bibliografia
  • 1. Bowen WH. Dental caries – not just holes in teeth! A perspective. Mol Oral Microbiol 2016;31:228–33.
  • 2. Petersen PE. World Health Organization global policy for improvement of oral health-World Health Assembly. Int Dent J 2008;58:115–21.
  • 3. Jin LJ, Lamster IB, Greenspan JS, Pitts NB, Scully C, Warnakulasuriya S. Global burden of oral diseases: emerging concepts, management and interplay with systemic health. Oral Dis 2016;22:609–19.
  • 4. Koo H, Jeon JG. Naturally occurring molecules as alternative therapeutic agents against cariogenic biofilms. Adv Dent Res 2009;21:63–8.
  • 5. Jeon JG, Klein MI, Xiao J, Gregoire S, Rosalen PL, Koo H. Influences of naturally occurring agents in combination with fluoride on gene expression and structural organization of Streptococcus mutansin biofilms. BMC Microbiol 2009;9:228.
  • 6. Moreillon P, Que YA. Infective endocarditis. Lancet 2004;363:139–49.
  • 7. Reference genome: Streptococcus mutans UA159 (https://www.ncbi.nlm.nih.gov/genome/856).
  • 8. Caufield PW, Childers NK, Allen DN, Hansen JB. Distinct bacteriocin groups correlate with different groups of Streptococcus mutans plasmids. Infect Immun 1984;48:51–6.
  • 9. Abranches J, Miller JH, Martinez AR, Simpson-Haidaris PJ, Burne RA, Lemos JA. The collagen-binding protein Cnm is required for Streptococcus mutans adherence to and intracellular invasion of human coronary artery endothelial cells. Infect Immun 2011;9:2277–84.
  • 10. Zhou X, Caufield PW, Li Y, Qi F. Complete nucleotide sequence and characterization of pUA140, a cryptic plasmid from Streptococcus mutans. Plasmid 2001;46:77–85.
  • 11. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997;25:3389–402.
  • 12. Rohl CA, Strauss CE, Misura KM, Baker D. Protein structure prediction using Rosetta. Method Enzymol 2004;383:66–93.
  • 13. Yang Z. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 2008;9:40.
  • 14. Petrey D, Xiang Z, Tang CL, Xie L, Gimpelev M, Mitros T, et al. Using multiple structure alignments, fast model building, and energetic analysis in fold recognition and homology modelling. Proteins 2003;53:430–5.
  • 15. Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 1993;26:283–91.
  • 16. Holm L, Kääriäninen S, Rosenström P, Schenkel A. Searching protein structure databases with DaliLite v.3. Bioinformatics 2008;24:2780–1.
  • 17. Ilyina TV, Koonin EV. Conserved sequence motifs in the initiator proteins for rolling circle DNA replication encoded by diverse replicons from eubacteria, eucaryotes and archeobacteria. Nucleic Acids Res 1992;20:3279–85.
  • 18. Gomith-Rüth FX, Moncalián G, Luque-Pérez R, Gonzáles A, Cabezón E, de La Cruz F, et al. The bacterial conjugation protein TrwB resembles ring helicases and F1-ATPase. Nature 2001;409:637–41.
  • 19. Hirokawa T, Boon-Chieng S, Mitaku S. SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics 1998;14:378–9.
  • 20. Dhaliwal S, Hoffman DW. The crystal structure of the N-terminal region of the alpha subunit of translation initiation factor 2 (eIF2alpha) from Saccharomyces cerevisiae provides a view of the loop containing serine 51, the target of the eIF2alpha-specific kinases. J Mol Biol 2003;334:187–95.
  • 21. Hulo N, Bairoch A, Bulliard V, Cerutti L, Cuche BA, de Castro E, et al. The 20 years of PROSITE. Nucleic Acids Res 2008;36:D245–9.
  • 22. Raumann BE, Rould MA, Pabo CO, Sauer RT. DNA recognition by β-sheets in the Arc repressor-operator crystal structure. Nature 1994;367:754–7.
  • 23. Li G, Zhang Y, Inouye M, Ikura M. Structural mechanism of transcriptional autorepression of the Escherichia coli RelB/RelE antitoxin/toxin module. J Mol Biol 2008;380:107–19.
  • 24. Kamada K, Hanaoka F. Conformational change in the catalytic site of the ribonucleaseYoeB toxin by YefM antitoxin. Mol Cell 2005;19:497–509.
  • 25. Le Blanc DJ, Hawley RJ, Lee LN, St Martin EJ. “Conjugal” transfer of plasmid DNA among oral streptococci. Proc Natl Acad Sci USA 1978;75:3484–7.
  • 26. Leonard CJ, Aravind L, Koonin EV. Novel families of putative protein kinases in bacteria and Archaea: evolution of the “eukaryotic” protein kinase superfamily. Genome Res 1998;8:1038–47.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ca48e3ff-072c-4b10-a9de-d2be77dd11f5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.