PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On Lebesgue measure and Hausdorff dimension of Julia sets of real periodic points of renormalization

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We give a new sufficient condition for the Julia set of a real analytic function which is a periodic point of renormalization to have Hausdorff dimension less than 2. This condition can be verified numerically. We present results of computer experiments suggesting that this condition is satisfied for real periodic points of renormalization with low periods. Our results support the conjecture that all real Feigenbaum maps have Julia sets of Hausdorff dimension less than 2.
Rocznik
Strony
151--168
Opis fizyczny
Bibliogr.21 poz., rys.
Twórcy
autor
  • Institute of Mathematics, Polish Academy of Sciences, Sniadeckich 8, 00-656 Warszawa, Poland
Bibliografia
  • [1] A. Avila and M. Lyubich, Hausdorff dimension and conformal measures of Feigenbaum Julia sets, J. Amer. Math. Soc. 21 (2008), 305-383.
  • [2] A. Avila and M. Lyubich, Lebesgue measure of Feigenbaum Julia sets, arXiv:1504.02986 (2015).
  • [3] X. Buff, Geometry of the Feigenbaum map, Conform. Geom. Dynam. 3 (1999), 79-101.
  • [4] X. Buff and A. Cheritat, Quadratic Julia sets with positive area, Ann. of Math. 172 (2012), 637-746.
  • [5] A. Burbanks, A. Osbaldestin, and J. Thurlby, Rigorous computer-assisted bounds on the period doubling renormalisation fixed point and eigenfunctions in maps with critical point of degree 4, arXiv:2006.13127 (2020).
  • [6] P. Coullet et C. Tresser, Itération d’endomorphismes et groupe de renormalisation, J. Phys. Colloque 39 (1978), no. C5, 25-28.
  • [7] A. Douady and J. Hubbard, On the dynamics of polynomial-like maps, Ann. Sci. École Norm. Sup. 18 (1985), 287-344.
  • [8] A. Dudko and S. Sutherland, On the Lebesgue measure of the Feigenbaum Julia set, Invent. Math. 221 (2020), 167-202.
  • [9] A. Dudko and M. Yampolsky, Poly-time computability of the Feigenbaum Julia set, Ergodic Theory Dynam. Systems 36 (2016), 2441-2462.
  • [10] P. L. Duren, Univalent Functions, Springer, 1983.
  • [11] H. Epstein, Fixed points of composition operators II, Nonlinearity 2 (1989), 305-310.
  • [12] H. Epstein, Fixed points of the period-doubling operator, lecture notes, Lausanne, 1992.
  • [13] M. Feigenbaum, Quantitative universality for a class of class of non-linear transformations, J. Statist. Phys. 19 (1978), 25-52.
  • [14] M. Feigenbaum, The universal metric properties of non-linear transformations, J. Statist. Phys. 21 (1979), 669-706.
  • [15] P. Hertling and C. Spandl, Computing a solution of Feigenbaum’s functional equation in polynomial time, Logical Methods Computer Sci. 10 (2014), no. 4, 1-9.
  • [16] O. Lanford III, A computer-assisted proof of the Feigenbaum conjectures, Bull. Amer. Math. Soc. (N.S.) 6 (1982), 427-434.
  • [17] M. Lyubich, Dynamics of quadratic polynomials, I-II, Acta Math. 178 (1997), 185-297.
  • [18] M. Lyubich, Feigenbaum-Coullet-Tresser universality and Milnor’s hairiness conjecture, Ann. of Math. 149 (1999), 319-420.
  • [19] W. de Melo and S. van Strien, One-Dimensional Dynamics, Springer, 1993.
  • [20] C. McMullen, Renormalization and 3-manifolds which Fiber over the Circle, Ann. Of Math. Stud. 142, Princeton Univ. Press, 1996.
  • [21] D. Sullivan, Bounds, quadratic differentials, and renormalization conjectures, in: Mathematics into Twenty-First Century, Amer. Math. Soc., 1992, 417-466.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ca485794-01be-4c27-ba7e-1bd4e2bff537
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.