Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this research, we develop a new analytical technique based on the Elzaki transform (ET) to solve the fractional-order biological population model (FBPM) with initial and boundary conditions (ICs and BCs). This approach can be used to locate both the closed approximate solution and the exact solution of a differential equation. The usefulness and validity of this strategy for managing the solution of FBPM are demonstrated using a few real-world scenarios. The dependability of the suggested strategy is also shown using a table and a few graphs. The approximate solutions that were achieved and the convergence analysis are shown in numerical simulations in a range of fractional orders. From the numerical simulations, it can be seen that the population density increases with increasing fractional order, whereas the population density drops with decreasing fractional order.
Czasopismo
Rocznik
Tom
Strony
564--570
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
autor
- Mathematics Department, College of Sciences and Arts, Alkamel, University of Jeddah, Saudi Arabia
autor
- Mathematics Department, Academy of Engineering and Medical Sciences, Khartoum 12045, Sudan
- Mathematics Department, Prince Muqrin University, Almadinah Almunawwarah, Saudi Arabia
Bibliografia
- 1. Kilbas AA, Srivastava HM, Trujillo JJ. Theory and Applications of Fractional Differential Equations. Elsevier. San Diego. 2006.
- 2. Momani S, Shawagfeh NT. Decomposition method for solving frac-tional Riccati differential equations. Appl.Math. Comput. 2006; 182:1083-1092.
- 3. Gejji VD, Jafari H. Solving a multi-order fractional differential equa-tion, Appl. Math. Comput. 2007;189:541-548.
- 4. Hilal EMA, Elzaki TM. Solution of Nonlinear Partial Differential Equa-tions by New Laplace Variational Iteration Method, Journal of Func-tion Spaces. 2014; 1-5. http://dx.doi.org/10.1155/2014/790714.
- 5. Elzaki TM, Biazar J. Homotopy Perturbation Method and Elzaki Transform for Solving System of Nonlinear Partial Differential Equa-tions. World Applied Sciences Journal. DOI: 10.5829/idosi.wasj.2013.24.07.1041
- 6. Elzaki TM, Ishag AA. Modified Laplace Transform and Ordinary Differential Equations with Variable Coefficients, World Engineering & Applied Sciences Journal. 2019; 10 (3): 79-84. DOI:10.5829/idosi.weasj.2019.79.84
- 7. Srivastava VK, Awasthi MK, Kumar S. Analytical approximations of two and three dimensional time fractional telegraphic equation by re-duced differential transform method. Egypt J Basic Appl Sci. https:// dx.doi.org/10.1016/j.ejbas.2014.01.002
- 8. Shakeri F, Dehghan M. Numerical solution of a biological population model using He’s variational iteration method. Comput Math Appl.2006;54:1197-209.
- 9. Roul P. Application of homotopy perturbation method to biological population model. Appl Appl Math. 2010;10:1369-78.
- 10. Duz M, Elzaki TM. Solution Of Constant Coeffients Partial Derivative Equations With Elzaki Transform Method. Twms J. App. Eng. Math. 2019;9(3):563-570.
- 11. Ike C, Elzaki TM. Elzaki Transform Method for Natural Frequency Analysis of Euler-Bernoulli Beams. Engineering and Technology Journal. 2023; 1-12. DOI: 10.30684/etj.2023.140211.1456
- 12. Elzaki TM, Ishag AA. Modified Laplace Transform and Ordinary Differential Equations with Variable Coefficients. World Engineering & Applied Sciences Journal. 2019;10(3):79-84. DOI: 10.5829/idosi.weasj.2019.79.84
- 13. Akinfe KT, Loyinmi AC. The implementation of an improved differen-tial transform scheme on the Schrodinger equation governing wave-particle duality in quantum physics and optics. Results in Physics. 2022.
- 14. Akinfe KT. A reliable analytic technique for the modified prototypical Kelvin–Voigt viscoelastic fluid model by means of the hyperbolic tan-gent function, Partial Differential Equations in Applied Mathematics 2023;7:100523.
- 15. Akinfe KT, Loyinmi AC. An improved differential transform scheme implementation on the generalized Allen–Cahn equation governing oil pollution dynamics in oceanography, Partial Differential Equations in Applied Mathematics. 2022;6:100416.
- 16. Akinfe KT, Loyinmi AC. Exact solutions to the family of Fisher’s reaction-diffusion equation using Elzaki homotopy transformation perturbation method. Wiley. 2019. DOI:10.1002/eng2.12084
- 17. Akinfe KT, Loyinmi AC. An algorithm for solving the Burgers–Huxley equation using the Elzaki transform. SN Appl. Sci. 2020;2(7). https://doi.org/10.1007/s42452-019-1653-3
- 18. Uçar E, Özdemir N. A fractional model of cancer-immune system with Caputo and Caputo–Fabrizio derivatives. Eur. Phys. J. Plus 2021;136(43). https://doi.org/10.1140/epjp/s13360-020-00966-9
- 19. Ucar E, Özdemir N, Altun E. Fractional order model of immune cells influenced by cancer cells Math. Model. Nat. Phenom. 2019; 14(3):308. DOI: https://doi.org/10.1051/mmnp/2019002
- 20. Ozdemir N, Uçar S, Eroglu BBI. Dynamical Analysis of Fractional Order Model for Computer Virus Propagation with Kill Signals. Inter-national Journal of Nonlinear Sciences and Numerical Simulation. 2019.
- 21. Hassaballa AA, Elzaki TM. Applications of the Improved G /G Expan-sion Method for Solve Burgers-Fisher Equation. Journal of Computa-tional and Theoretical Nanoscience, 2017;14: 4664–4668.
- 22. Elzaki TM, Elzaki SM, Elnour EA. Applications of New Transform Elzaki Transform to Mechanics, Electrical Circuits and Beams Prob-lems. Global Journal of Mathematical Sciences: Theory and Practi-cal. 2012;4(1):25-34.
- 23. Mohamed M, hamza A, Elzaki TM, Algolam M, Elhussein S. Solution of Fractional Heat-Like and Fractional Wave-Like Equation by Using Modern Strategy. Acta Mechanica et Automatica 2023;17(3):372-380. https://doi.org/10.2478/ama-2023-0042.
- 24. Elzaki TM, Shams EA, Areshi M, Chamekh M. Fractional partial differential equations and novel double integral transform, Journal of King Saud University. 2022;34(3):101832.
- 25. Gadain H.E. Application of double Laplace decomposition method for solving singular one dimensional a system of hyperbolic equations. J. Nonlinear Sci. Appl. 2017;10:111–121.
- 26. Kaya D, Inan IE. A convergence analysis of the ADM and an applica-tion. Appl. Math. Comput. 2005;161:1015–1025.
- 27. Rahman MU, Althobaiti A, Riaz MB, Al-Duais FS. A Theoretical and Numerical Study on Fractional Order Biological Models with Caputo Fabrizio Derivative. Fractal Fract. 2022;6:446. https://doi.org/10.3390/ fractalfract6080446
- 28. Akinfe KT, Loyinmi AC. A solitary wave solution to the generalized Burgers-Fisher’s equation using an improved differential transform method: A hybrid scheme approach. https://doi.org/10.1016/j.heliyon.2021.e07001
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ca481652-febb-4ca4-a434-a05e9254d05a