PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Separation of oil-in-water emulsions using polymer coalescence structures

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Application of polymer media for coalescence of oil droplets and separation of O/W emulsion was studied. The research was focused on the structural design of a primary coalescence layer. High efficiencies of separation were obtained for structures made of finest fibres. The increase of the average fibre diameter led to a decrease of pressure drop and reduced efficiency of oil droplets removal. Thick fibres performed well as the drainage media and enabled detachment of large droplets. In addition the influence of the material wettability and resulting saturation of coalescence structures on their operation performance was studied.
Rocznik
Strony
19--39
Opis fizyczny
Bibliogr. 24 poz., tab., rys.
Twórcy
  • 1Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Waryńskiego 1, 00-645, Warsaw, Poland
Bibliografia
  • [1] DAVIES G.A., JEFFREYS G.V., Coalescence of droplets in packings: Factors affecting the separation of droplet dispersions, Filtr. Sep., 1969, 6, 4, 349.
  • [2] SHERONY D.F., KINTNER R.C., WASAN D.T., Coalescence of secondary emulsions in fibrous beds, Surf. Coll. Sci., 1978, 10, 99.
  • [3] ABDEL-GHANI M.S., Coalescence and flow of secondary dispersions in fibre beds, PhD thesis, Univer-sity of Manchester, UK, 1983.
  • [4] CLAYFIELD A.J., DIXON A.G., FOULDS A.W., MILLER R.J.L., The coalescence of secondary dispersions. I. The effect of wettability and surface energy, J. Coll. Int. Sci., 1985, 104, 2, 500.
  • [5] OTHMAN F.M., FAHIM M.A., JEFFREYS G.V., MUMFORD C.J., Prediction of predominant mechanisms in the separation of secondary dispersions in a fibrous bed, J. Disp. Sci. Technol., 1988, 9, 2, 91.
  • [6] MAGIERA R., BLASS E., Separation of liquid-liquid dispersions by flow through fibre beds, Filtr. Sep., 1997, 34, 4, 369.
  • [7] SECEROV-SOKOLOVIC R.M., SOKOLOVIC S.M., Effect of the nature of different polymeric fibers on steady-state bed coalescence of an oil-in-water emulsion, Ind. Eng. Chem. Res., 2004, 43, 6490.
  • [8] SHIN C., CHASE G.G., Separation of water-in-oil emulsions using glass fiber media augmented with polymer nanofibers, J. Disp. Sci. Technol., 2006, 27, 4, 517.
  • [9] SECEROV-SOKOLOVIC R.M., VULIC T.J., SOKOLOVIC S.M., Effect of bed length on steady-state coalescence of oil-in-water emulsion, Sep. Purif. Technol., 2007, 56, 79.
  • [10] BANSAL S., VON ARNIM V., STEGMAIER T., PLANCK H., Effect of fibrous filter properties on the oil-in-water-emulsion separation and filtration performance, J. Hazard. Mat., 2011, 190, 45.
  • [11] AGARVAL S., VON ARNIM V., STEGMAIER T., PLANCK H., AGARWAL A., Role of surface wettability and roughness in emulsion separation, Sep. Purif. Technol., 2013, 107, 19.
  • [12] KUNDU P., MISHRA I.M., Removal of emulsified oil from oily wastewater (oil-in-water emulsion) using packed bed of polymeric resin beads, Sep. Purif. Technol., 2013, 118, 519.
  • [13] MAITI S., MISHRA I.M., BHATTACHARYA S.D., JOSHI J.K., Removal of oil from oil-in-water emulsion using a packed bed of commercial resin, Coll. Surf. A: Phys. Eng. Asp., 2011, 389, 291.
  • [14] ZHU Y., WANG D., JIANG L., JIN J., Recent progress in developing advanced membranes for emulsified oil/water separation, NPG Asia Mat., 2014, 6, 101.
  • [15] SOLOMON B.R., HYDER M.N., VARANASI K.K., Separating oil-water nanoemulsions using flux-enhanced hierarchical membranes, Sci. Rep., 2014, 4, 5504, 1.
  • [16] PATEL S.U., CHASE G.G., Separation of water droplets from water-in-diesel dispersion using superhy drophobic polypropylene fibrous membranes, Sep. Purif. Technol., 2014, 126, 62.
  • [17] GOGÓŁ W., Heat exchange. Tables and Graphs, Wyd. Politechniki Warszawskiej, Warszawa 1984.
  • [18] GÖBEL J.G., JOPPIEN G.R., Dynamic interfacial tensions of aqueous Triton X-100 solutions in contact with air, cyclohexane, n-heptane, and n-hexadecane, J. Colloid Interf. Sci., 1997, 191, 30.
  • [19] Polish Standard Test Method PN-82/C.04565.01: Water and Wastewater – Determination of the non-polar aliphatic hydrocarbons using IR spectroscopy.
  • [20] SIEBOLD A., NARDIN M., SCHULTZ J., WALLISER A., OPPLIGER M., Effect of dynamic contact angle on capillary rise phenomena, Colloids Surf., A: Physicochem. Eng. Asp., 2000, 161, 81.
  • [21] YANG B.W., CHANG Q., Wettability studies of filter media using capillary rise test, Sep. Purif. Technol., 2008, 60, 335.
  • [22] http://www.accudynetest.com/polytable_01.html
  • [23] KRASINSKI A., A numerical model of droplets coalescence and drainage in fibrous structures, Chem. Eng. Trans., 2013, 32, 1495.
  • [24] GUTKOWSKI B., MYDLARCZYK S., KOWALSKA M., HUPKA J., Saturation profiles in coalescence bed, Stud. Env. Sci., 1984, 23, 285.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ca419235-90a9-4bcd-8168-c5df03dbff3c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.